Suppose that we have a regression model $y_i = \beta_1 + \beta_2 x_i + e_i$, or $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$, in which it is known that the variance of the error term is proportional to some known external variable z: $var(e_i) = z_i \sigma^2$.

1. Show that
$$\operatorname{cov}(\mathbf{e}) = E(\mathbf{e}\mathbf{e}') = \sigma^2 \mathbf{W} = \sigma^2 \begin{bmatrix} z_1 & 0 & \cdots & 0 \\ 0 & z_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & z_N \end{bmatrix}$$
.

2. Show that
$$\begin{bmatrix} \frac{1}{z_1} & 0 & \cdots & 0 \\ 0 & \frac{1}{z_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{z_N} \end{bmatrix} = \mathbf{W}^{-1} \text{ by showing that multiplying it by } \mathbf{W} \text{ gives } \mathbf{I}_N.$$

3. Let
$$\mathbf{P} = \begin{bmatrix} \frac{1}{\sqrt{z_1}} & 0 & \cdots & 0 \\ 0 & \frac{1}{\sqrt{z_2}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{\sqrt{z_N}} \end{bmatrix}$$
. Show that $\mathbf{PP'} = \mathbf{W}^{-1}$.

4. Consider the "transformed" model $\mathbf{y}^* = \mathbf{X}^* \boldsymbol{\beta} + \mathbf{e}^*$, where $\mathbf{y}^* \equiv \mathbf{P} \mathbf{y}$, $\mathbf{X}^* \equiv \mathbf{P} \mathbf{X}$, and $\mathbf{e}^* \equiv \mathbf{P} \mathbf{e}$. Show that the representative element of $\mathbf{P} \mathbf{y}$ is $\frac{y_i}{\sqrt{z_i}}$, that the representative element of the first column of

PX is $\frac{1}{\sqrt{z_i}}$, that the representative element of the second column of **PX** is $\frac{x_i}{\sqrt{z_i}}$, and that the representative element of **Pe** is $\frac{e_i}{\sqrt{z_i}}$.

- 5. Show that $E(\mathbf{e} * \mathbf{e} *') = \sigma^2 \mathbf{I}_N$, so that the transformed model satisfies the SR assumptions leading to the Gauss-Markov Theory and the conclusion that OLS is the best, linear, unbiased estimator of the transformed model.
- 6. Show that the generalized least-squares estimator (in this case, the weighted least-squares estimator) $\hat{\boldsymbol{\beta}}_{GLS} \equiv \left(\boldsymbol{X}^{*'}\boldsymbol{X}^{*} \right)^{-1} \boldsymbol{X}^{*'}\boldsymbol{y}^{*}$ is equal to $\left(\boldsymbol{X}'\boldsymbol{\Sigma}^{-1}\boldsymbol{X} \right)^{-1} \left(\boldsymbol{X}'\boldsymbol{\Sigma}^{-1}\boldsymbol{y} \right)$.