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Section 9 Regression with Stationary Time 

Series 

How time-series regression differs from cross-section 

 Natural ordering of observations contains information 

o Random reshuffling of observations would obscure dynamic economic 

relationship, but leave traditional regression unchanged 

o How can we incorporate this dynamic information into our regression model? 

 We usually think of the data as being drawn from a potentially infinite data-generating 

process rather than from a finite population of observations. 

 Variables are often call “time series” or just “series” rather than variables 

o Index observations by time period t 

o Number of observations = T 

 Dynamic relationship means that not all of the effects of xt occur in period t. 

o A change in xt is likely to affect yt + 1, yt + 2, etc. 

o By the same logic, yt depends not only on xt but also on xt – 1, xt – 2, etc. 

o We model these dynamic relationships with distributed lag models, in which 

 1 2, , ,t t t ty f x x x   . 

 We will need to focus on the dynamic elements of both the deterministic relationship 

between the variables and the stochastic relationship (error term) 

 The dynamic ordering of observations means that the error terms are usually serially 

correlated (or autocorrelated over time) 

o Shocks to the regression are unlikely to completely disappear before the 

following period 

 Exception: stock market returns, where investors should respond to any 

shock and make sure that next period’s return is not predictable 

o Two observations are likely to be more highly correlated if they are close to the 

same time than if they are more widely separated. 

o Covariance matrix of error term will have non-zero off-diagonal elements, with 

elements lying closest to the diagonal likely being substantially positive and 

decreasing as one moves away from the diagonal. 

 Nonstationary time series create problems for econometrics. 

o We will study implications of and methods for dealing with nonstationarity in 

Section 12. 

o Example will illustrate nature of problem (“spurious regressions”) 

 Regression of AL attendance on Botswana real GDP 

 Correlation = 0.9656 
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 R2 = 0.9323 

 Coefficient has t of 24.90. 

 Good regression? 
     
  Source |       SS       df       MS              Number of obs =      47 
-------------+------------------------------           F(  1,    45) =  619.89 
       Model |  3.4342e+15     1  3.4342e+15           Prob > F      =  0.0000 
    Residual |  2.4930e+14    45  5.5400e+12           R-squared     =  0.9323 
-------------+------------------------------           Adj R-squared =  0.9308 
       Total |  3.6835e+15    46  8.0077e+13           Root MSE      =  2.4e+06 
 
------------------------------------------------------------------------------ 
    ALAttend |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      rgdpl2 |    3285.11   131.9447    24.90   0.000      3019.36     3550.86 
       _cons |    8029710   640681.3    12.53   0.000      6739311     9320108 
------------------------------------------------------------------------------ 

 

o Correlation is spurious because both series are trending upward, so most of 

each series’ deviation from mean is due to separate trends. 

o Much of the last 20 years in econometrics has been devoted to understanding 

how to deal with nonstationary time series. 

o We will study this intensively in a few weeks. 

o Nonstationarity forces us to remove the common trend (often by 

differencing) before interpreting the correlation or regression 

Lag operators and differences 

 With time-series data we are often interested in the relationship among variables at 

different points in time. 

 Let xt be the observation corresponding to time period t. 

o The first lag of x is the preceding observation: xt – 1. 

o We sometimes use the lag operator L(xt) or Lxt  xt – 1 to represent lags. 

o We often use higher-order lags: Lsx  xt – s. 

 The first difference of x is the difference between x and its lag: 

o xt  xt – xt – 1 = (1 – L)xt 

o Higher-order differences are also used:  

2xt = (xt) = (xt – xt – 1) – (xt – 1 – xt – 2) = xt – 2xt – 1 + xt – 2  

= (1 – L)2xt = (1 – 2L + L2)xt 

o sxt = (1 – L)sxt  

 Difference of the log of a variable is approximately equal to the variable’s growth rate: 

(lnxt) = lnxt – lnxt – 1 = ln(xt /xt – 1) ≈ xt /xt – 1 – 1 = xt / xt 

o Log difference is exactly the continuously-compounded growth rate 

o The discrete growth-rate formula xt / xt is the formula for once-per-period 

compounded growth 
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 Lags and differences in Stata 

o First you must define the data to be time series: tsset year 

 This will correctly deal with missing years in the year variable. 

 Can define a variable for quarterly or monthly data and set format to 

print out appropriately. 

 For example, suppose your data have a variable called month and one 

called year. You want to combine into a single time variable called time. 

 gen time = ym(year, month) 

 This variable will have a %tm format and will print out like 

2010m4 for April 2010. 

 You can then do tsset time 

o Once you have the time variable set, you can create lags with the lag operator l. 

and differences with d. 

 For example, last period’s value of x is l.x 

 The change in x between now and last period is d.x 

 Higher-order lags and differences can be obtained with l3.x for third lag 

or d2.x for second difference. 

Autocovariance and autocorrelation 

 Autocovariance of order s is cov(xt, xt – s) 

o We generally assume that the autocovariance depends only on s, not on t. 

o This is analogous to our Assumption #0: that all observations follow the same 

model (or were generated by the same data-generating process) 

o This is one element of a time series being stationary 

 Autocorrelation of order s (s) is the correlation coefficient between xt and xt – s. 

o 
 
 

cov ,

var
t t k

k
t

x x

x
   

o We estimate with 
  

 
1

1

1

.
1

T

t t s
t k

k T

t
t

x x x x
T kr

x x
T


 



 







  

 We sometimes subtract one from both denominators, or sometimes 

ignore the different fractions in front of the summations since their ratio 

goes to 1 as T goes to ∞. 

 k as a function of k is called the autocorrelation function of the series and its plot is 

often called a correlogram. 

Some simple univariate time-series models 

 We sometimes represent a variable’s time-series behavior with a univariate model. 
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 White noise: The simplest univariate time-series process is called white noise yt = vt, 

where vt is a mean-zero IID error (usually normal). 

o The key point here is the autocorrelations of white noise are all zero (except, of 

course, for 0, which is always 1).  

o Very few economic time series are white noise. 

 Changes in stock prices are probably one. 

o We use white noise as a basic building block for more useful time series: 

 Consider problem of forecasting yt conditional on all past values of y. 

  1 2| , ,t t t t ty E y y y v    

 Since any part of the past behavior of y that would help to predict the 

current y should be accounted for in the expectation part, the error term v 

should be white noise. 

 The one-period-ahead forecast error of y should be white noise. 

 We sometimes call this forecast-error series the “fundamental underlying 

white noise series for y” or the “innovations” in y. 

 The simplest autocorrelated series is the first-order autoregressive (AR(1)) process: 

0 1 1 ,t t ty y v     where e is white noise. 

o In this case, our one-period-ahead forecast is  1 0 1 1|t t tE y y y     and the 

forecast error is vt. 

o For simplicity, suppose that we have removed the mean from y so that 0 = 0. 

 Consider the effect of a one-time shock v1 on the series y from time one 

on, assuming (for simplicity) that y0 = 0 and all subsequent v values are 

also zero. 

  1 1 1 10y v v    

 2 1 1 2 1 1y y v v    

 2
3 1 2 3 1 1y y v v    

 1
1 1.
s

sy v  

 This shows that the effect of the shock on y “goes away” over time only if 

|1| < 1. 

 The condition |1| < 1 is necessary for the AR(1) process to be 

stationary. 

 If 1 = 1, then shocks to y are permanent. This series is called a random 

walk.  

 The random walk process can be written 1t t ty y v   or 

.t ty v   The first difference of a random walk is stationary and 

is white noise. 

o If y follows a stationary AR(1) process, then 1 = 1, 2 = 2
1 , …, 1

s
s  . 
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 One way to attempt to identify the appropriate specification for a time-

series variable is to examine the autocorrelation function of the series. 

 If the autocorrelation function declines exponentially toward zero, then 

the series might follow an AR(1) process with positive 1. 

 A series with 1 < 0 would oscillate back and forth between positive and 

negative responses to a shock. 

 The autocorrelations would also oscillate between positive and 

negative while converging to zero. 

Assumptions of time-series regression 

 Before we deal with issues of specifications of y and x, we will think about the problems 

that serially correlated error terms cause for OLS regression. (GHL’s Section 9.3) 

 Can estimate time-series regressions by OLS as long as y and x are stationary and x is 

exogenous. 

o Exogeneity:  1| , , 0.t t tE e x x    

o Strict exogeneity:  2 1 1 2| , , , , , , 0.t t t t t tE e x x x x x       

 Assumptions of time-series regression: 

o TSMR2: y and x are stationary and x is strictly exogenous 

o TSMR3:   0tE e   

o TSMR4:   2var te    

o TSMR5:  cov , 0,t se e t s   

o TSMR6:  2~ 0,te N   

 However, nearly all time-series regressions are prone to having serially correlated error 

terms, which violates TSMR5. 

o Omitted variables are probably serially correlated 

 This is a particular form of violation of the IID assumption.  

o Observations are correlated with those of nearby periods 

 As long as the other OLS assumptions are satisfied, this causes a problem not unlike 

heteroskedasticity 

o OLS is still unbiased and consistent 

o OLS is not efficient 

o OLS estimators of standard errors are biased, so cannot use ordinary t statistics 

for inference 

 To some extent, adding more lags of y and x to the specification can reduce the severity 

of serial correlation. 

 Two methods of dealing with serial correlation of the error term: 
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o GLS regression in which we transform the model to one whose error term is not 

serially correlated  

 This is analogous to weighted least squares (also a GLS procedure) 

o Estimate by OLS but use standard error estimates that are robust to serial 

correlation 

Detecting autocorrelation 

o We can test the autocorrelations of a series to see if they are zero. 

 Asymptotically,  ~ ,1k kT r N  , so we can compute this as a test 

statistic and test against the null hypothesis k = 0. 

o Breusch-Godfrey Lagrange multiplier test for autocorrelation: 

 Regress y (or residuals) on x and lagged residuals (first-order, or more) 

 Use F test of residual coefficient(s) in y regression or TR2 in residual 

regression as 2 

o Box-Ljung Q test for null hypothesis that the first k autocorrelations are zero: 
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  is asymptotically 2.k  

o Durbin-Watson test used to be the standard test for first-order autocorrelation, 

but was difficult because critical values depend on x. Not used much anymore. 

Estimation with autocorrelated errors 

 OLS with autocorrelated errors 

o Assumption TSMR4 is violated, which leads to inefficient estimators and biased 

standard errors just like in case of heteroskedasticity 

o Important special case: We will see that a common distributed lag model puts 

yt – 1 on the right-hand side as a regressor. This causes special problems when 

there is serial correlation because 

 1te   is part of 1ty   

 1te   is correlated with et 

 Therefore et is correlated with one of the regressors, which leads to bias 

and inconsistency in the coefficient estimators. 

 If we can transform the model into one that has no autocorrelation (for 

example, vt if error term is 1t t te e v   ), then we can get consistent OLS 

estimators as long as all the x variables are exogenous (but not necessarily 

strictly exogenous) with respect to v. 

 HAC consistent standard errors (Newey-West) 

o As with White’s heteroskedasticity consistent standard errors, we can correct the 

OLS standard errors for autocorrelation as well. 
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o We know that  
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 Under IID assumption,    
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   and the formula 

reduces to one we know from before. 

 However, serial correlation means that the error terms are not IID (and x 

is usually not either), so this doesn’t apply. 

o In the case where there is serial correlation we have to take into account the 

covariance of the ut terms: 
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 which expresses the variance as the product of the 

no-autocorrelation variance and the fT factor that corrects for autocorrelation. 
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o In order to implement this, we need to know fT, which depends on the 

autocorrelations of u for orders 1 through T – 1. 

 These are not known and must be estimated. 

 For 1 we have lots of information because there are T – 1 pairs of values 

for (ut, ut – 1) in the sample. 

 For T – 1, there is only one pair (ut, ut – (T –1))—namely (uT, u1)—on which 

to base an estimate. 

 The Newey-West procedure truncates the summation in fT at some value 

m – 1, so we estimate the first m – 1 autocorrelations of v using the OLS 

residuals and compute 
1

1

ˆ 1 2 .
m

T j
j

m j
f r

m





    
 

  

 m must be large enough to provide a reasonable correction but small 

enough relative to T to allow the r values to be estimated well. 

 Stock and Watson suggest choosing 
1
30.75m T  as a reasonable 

rule of thumb. 

o To implement in Stata, use hac option in xtreg (with panel data) or post-

estimation command newey , lags(m) 

 GLS with an AR(1) error term 

o One of the oldest time-series models (and not used so much anymore) is the 

model in which et follows and AR(1) process: 
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where  is a white-noise error term and –1 <  < 1. 

 In practice,  > 0 nearly always 

o GLS transforms the model into one with an error term that is not serially 

correlated. 

o Let  
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o Then   1 21 .t t ty x e        

 The error term in this regression is equal to vt for observations 2 through 

T and is a multiple of e1 for the first observation.  
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 By assumption, v is white noise and values of v in periods after 1 are 

uncorrelated with e1, so there is no serial correlation in this transformed 

model. 

 If the other assumptions are satisfied, it can be estimated efficiently by 

OLS. 

o But what is ? 

 Need to estimate  to calculate feasible GLS estimator. 

 Traditional estimator for  is  1ˆ ˆ ˆcorr ,t te e   using OLS residuals. 

 This estimation can be iterated to get a new estimate of  based on the 

GLS estimator and then re-do the transformation: repeat until converged. 

o Two-step estimator using FGLS based on ̂  is called the Prais-Winsten 

estimator (or Cochrane-Orcutt when first observation is dropped). 

o Problems:  is not estimated consistently if et is correlated with xt, which will 

always be the case if there is a lagged dependent variable present and may be the 

case if x is not strongly exogenous. 

 In this case, we can use nonlinear methods to estimate  and  jointly by 

search. 

 This is called the Hildreth-Lu method. 

o In Stata, the prais command implements all of these methods (depending on 

option). Option corc does Cochrane-Orcutt; ssesearch does Hildreth-Lu; and the 

default is Prais-Winsten. 

o You can also estimate this model with  as the coefficient on yt – 1 in an OLS 

model, with or without the restriction implied in HGL’s equation (9.44). 

Distributed-lag models 

 Modeling the deterministic part of a dynamic relationship between two variables 

 In general, the distributed-lag model has the form 
0

t i t i t
i

y x e





     . But of course, we 

cannot estimate an infinite number of lag coefficients i, so we must either truncate or 

find another way to approximate an infinite lag structure. 

o Multipliers 
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 is the s-period delay multiplier, telling how much a one-

time, temporary shock to x would be affecting y s periods later 

 0 is the “impact multiplier” 
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  is the cumulative or “interim” multiplier after s periods. It 

measures the cumulative effect of a permanent change in x on y s periods 

later. 

 
1

s
s





  is the “total multiplier” measuring the final cumulative effect of a 

permanent change in x on y. 

o We can easily have additional regressors with either the same or different lag 

structures. 

 Finite distributed lags 

o  0 1 1 ...t t t q t q t t ty x x x e L x e             

o This is finite distributed-lag model of order q 

o Under assumptions TSMR1–6, the model can be estimated by OLS. If there is 

serial correlation, then the appropriate correction must be made to standard 

errors or a GLS model must be used. 

o Problems with finite DL model 

 If x is strongly autocorrelated, then collinearity will be a problem and it 

will be difficult to estimate individual lag weights accurately 

 Difficult to know appropriate lag length (can use AIC or SC) 

 If lags are long and sample is short, will lose lots of observations. 

 Koyck lag: y is AR(1) with regressors 

o 1 1 0t t t ty y x v     

o 
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Thus, dynamic multipliers start at 0 and decay exponentially to zero over 

infinite time. Thus, this is effectively a distributed lag of infinite length, but with 

only 2 parameters (plus intercept) to estimate. 

o Cumulative multipliers are 
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o Long-run effect of a permanent change is 0
0 1

0 1

.
1

k
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o Estimation has the potential problem of inconsistency if vt is serially correlated. 
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 This is a serious problem, especially as some of the test statistics for serial 

correlation of the error are biased when the lagged dependent variable is 

present. 

o Koyck lag is parsimonious and fits lots of lagged relationships well. 

o With multiple regressors, the Koyck lag applies the same lag structure (rate of 

decay) to all regressors. 

 Is this reasonable for your application? 

 Example: delayed adjustment of factor inputs: can’t stop using expensive 

factor more quickly than you start using cheaper factor. 

 ARX(p) Model 

o We can generalize the Koyck lag model to longer lags: 

1 1 0 .t t p t p t ty y y X v            

o This can be written   0 .t t tL y x v      

o Same general principles apply: 

 Worry about stationarity of lag structure: roots of (L) 

 If v is serially correlated, OLS will be biased and inconsistent 

 Dynamic multipliers are determined by coefficients of infinite lag 

polynomial [(L)]–1 

 If more than on x, all have same lag structure 

o How to determine length of lag p? 

 Can keep adding lags as long as p is statistically significant 

 Can choose to max the Akaike information criterion (AIC) or Bayesian 

(Schwartz) information criterion (SC). 

 Note that regression can use as many as T – p observations, but should 

use the same number for all regressions with different p values in 

assessing information criteria. 

 AIC will choose longer lag than SC. 

 AIC came first, so is still used a lot 

 SC is asymptotically unbiased 

 Stata calculates info criteria by estat ic (after regression) 

 ADL(p, q) Model: “Rational” lag 

o We can also add lags to the x variable(s) 

o 0 1 1 0 1 1t t p t p t t q t q ty y y x x x v                    

 Can add more x variables with varying lag lengths 
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 Multipliers are the (infinite) coefficients on the lag polynomial 
 
 
L

L




 

o Stationarity depends only on (L), not on (L). 

o Can easily estimate this by OLS assuming: 

  1 2 1| , , , , , , , 0t t t t p t t t qE v y y y x x x        

 (yt, xt) has same mean, variance, and autocorrelations for all t 

 (yt, xt) and (yt – s, xt – s) become independent as s  ∞ 

 No perfect multicollinearity 

o These are general TSMR assumptions that apply to most time-series models. 

Forecasting with time-series models 

 With AR(p) model 

o 1 1 2 2 ... ,t t t p t p ty y y y v             with v assumed to be serially 

uncorrelated. 

o We have observations for t = 1, 2, …, T 

o Forecast for T + 1: 1 1 2 1 1
ˆ ˆ ˆ ˆˆ ...T T T p T py y y y             with expected value 

of v at zero because of no serial correlation 

 If error term were autoregressive, then conditional expectation of 

vT + 1 would be vT, so would include residual of observation T 

o Forecast error is    1 1 1 1 1
1

ˆ ˆˆ
p

T T s s T s T
s

u y y y v    


            

 HGL assume that      1 1
1

ˆ ˆvar var ,
p

T s s T s
s

v y  


 
        

 
  so 

they ignore the latter. 

 I’m not willing to ignore this (although it is often true that the 

variance of the error is larger, as in Problem 6.17. 

 I will write    ,
1

ˆ ˆ
p

b k s s T k s
s

e y  


        and   ,var b ke  to be that 

component of the k-period-ahead forecast and keep it in the equation 

 1 ,1 1,b Tu e v    

     2
1 ,1var var b vu e    

o What about forecast for T + 2? 

 yT + 1 appears on the right-hand side of the T+ 2 equation, so we 

substitute our one-period-ahead forecast of it: 

2 1 1 2 2
ˆ ˆ ˆ ˆˆ ˆ ...T T T p T py y y y             
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 Forecast error is 

     2 2 2 1 1 1 2 2
1

,2 1 ,1 2 1 1

ˆ ˆˆ ˆ
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 Variance of forecast error is 

       2 2 2
2 ,2 1 ,1 1var var var 1 .b b vu e e        

 Similarly, 

            2 22 2 2 2 2
3 ,3 1 ,2 1 2 ,1 1 2 1var var var var 1b b b vu e e e              

 

 


