Section 9 Regression with Stationary Time Series

How time-series regression differs from cross-section

- Natural ordering of observations contains information
 - Random reshuffling of observations would obscure dynamic economic relationship, but leave traditional regression unchanged
 - How can we incorporate this dynamic information into our regression model?
- We usually think of the data as being drawn from a potentially infinite **data-generating process** rather than from a finite population of observations.
- Variables are often call "time series" or just "series" rather than variables
 - Index observations by time period t
 - Number of observations = T
- Dynamic relationship means that not all of the effects of x_t occur in period t.
 - A change in x_t is likely to affect y_{t+1} , y_{t+2} , etc.
 - By the same logic, y_t depends not only on x_t but also on x_{t-1} , x_{t-2} , etc.
 - We model these dynamic relationships with **distributed lag** models, in which $y_t = f(x_t, x_{t-1}, x_{t-2}, ...)$.
- We will need to focus on the dynamic elements of both the deterministic relationship between the variables and the stochastic relationship (error term)
- The dynamic ordering of observations means that the error terms are usually **serially correlated** (or autocorrelated over time)
 - Shocks to the regression are unlikely to completely disappear before the following period
 - Exception: stock market returns, where investors should respond to any shock and make sure that next period's return is not predictable
 - Two observations are likely to be more highly correlated if they are close to the same time than if they are more widely separated.
 - Covariance matrix of error term will have non-zero off-diagonal elements, with elements lying closest to the diagonal likely being substantially positive and decreasing as one moves away from the diagonal.
- Nonstationary time series create problems for econometrics.
 - We will study implications of and methods for dealing with nonstationarity in Section 12.
 - Example will illustrate nature of problem ("spurious regressions")
 - Regression of AL attendance on Botswana real GDP
 - Correlation = 0.9656

- $R^2 = 0.9323$
- Coefficient has *t* of 24.90.
- Good regression?

Source	ss d	lf MS		Numbe	r of obs =	47
Model Residual Total	3.4342e+15 2.4930e+14 3.6835e+15	1 3.43 45 5.54 46 8.00	42e+15 00e+12 77e+13	F F R A R	rob > F -squared dj R-squared toot MSE	= 0.19.89 = 0.0000 = 0.9323 = 0.9308 = 2.4e+06
ALAttend	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
rgdpl2 _cons	3285.11 8029710	131.9447 640681.3	24.90 12.53	0.000 0.000	3019.36 6739311	3550.86 9320108

- Correlation is spurious because both series are trending upward, so most of each series' deviation from mean is due to separate trends.
- Much of the last 20 years in econometrics has been devoted to understanding how to deal with nonstationary time series.
- We will study this intensively in a few weeks.
- Nonstationarity forces us to remove the common trend (often by differencing) before interpreting the correlation or regression

Lag operators and differences

- With time-series data we are often interested in the relationship among variables at different points in time.
- Let x_t be the observation corresponding to time period t.
 - The first lag of x is the preceding observation: x_{t-1} .
 - We sometimes use the **lag operator** $L(x_t)$ or $Lx_t \equiv x_{t-1}$ to represent lags.
 - We often use higher-order lags: $L^{s}x \equiv x_{t-s}$.
- The first difference of *x* is the difference between *x* and its lag:
 - $\circ \quad \Delta x_t \equiv x_t x_{t-1} = (1 L)x_t$
 - Higher-order differences are also used:

$$\Delta^2 x_t = \Delta(\Delta x_t) = (x_t - x_{t-1}) - (x_{t-1} - x_{t-2}) = x_t - 2x_{t-1} + x_{t-2}$$

- $= (1-L)^2 x_t = (1-2L+L^2) x_t$
- $\circ \quad \Delta^s x_t = (1-L)^s x_t$
- Difference of the log of a variable is approximately equal to the variable's growth rate: $\Delta(\ln x_t) = \ln x_t - \ln x_{t-1} = \ln(x_t/x_{t-1}) \approx x_t/x_{t-1} - 1 = \Delta x_t/x_t$
 - o Log difference is exactly the continuously-compounded growth rate
 - The discrete growth-rate formula $\Delta x_t / x_t$ is the formula for once-per-period compounded growth

- Lags and differences in Stata
 - First you must define the data to be time series: tsset year
 - This will correctly deal with missing years in the year variable.
 - Can define a variable for quarterly or monthly data and set format to print out appropriately.
 - For example, suppose your data have a variable called month and one called year. You want to combine into a single time variable called time.
 - gen time = ym(year, month)
 - This variable will have a %tm format and will print out like 2010m4 for April 2010.
 - You can then do tsset time
 - Once you have the time variable set, you can create lags with the lag operator 1. and differences with d.
 - For example, last period's value of x is 1.x
 - The change in x between now and last period is d.x
 - Higher-order lags and differences can be obtained with 13.x for third lag or d2.x for second difference.

Autocovariance and autocorrelation

- Autocovariance of order *s* is $cov(x_t, x_{t-s})$
 - We generally assume that the autocovariance depends only on *s*, not on *t*.
 - This is analogous to our Assumption #0: that all observations follow the same model (or were generated by the same data-generating process)
 - This is *one element* of a time series being stationary
- Autocorrelation of order $s(\rho_s)$ is the correlation coefficient between x_t and x_{t-s} .

$$\circ \quad \rho_k = \frac{\operatorname{cov}(x_t, x_{t-k})}{\operatorname{var}(x_t)}$$

• We estimate with
$$r_k = \frac{\frac{1}{T-k} \sum_{t=k+1}^{T} (x_t - \overline{x}) (x_{t-s} - \overline{x})}{\frac{1}{T} \sum_{t=1}^{T} (x_t - \overline{x})}$$
.

- We sometimes subtract one from both denominators, or sometimes ignore the different fractions in front of the summations since their ratio goes to 1 as *T* goes to ∞.
- ρ_k as a function of k is called the autocorrelation function of the series and its plot is
 often called a correlogram.

Some simple univariate time-series models

• We sometimes represent a variable's time-series behavior with a univariate model.

- White noise: The simplest univariate time-series process is called white noise $y_t = v_t$, where v_t is a mean-zero IID error (usually normal).
 - The key point here is the autocorrelations of white noise are all zero (except, of course, for ρ_0 , which is always 1).
 - Very few economic time series are white noise.
 - Changes in stock prices are probably one.
 - We use white noise as a basic building block for more useful time series:
 - Consider problem of forecasting *y*_t conditional on all past values of *y*.
 - $y_t = E[y_t | y_{t-1}, y_{t-2}, ...] + v_t$
 - Since any part of the past behavior of *y* that would help to predict the current *y* should be accounted for in the expectation part, the error term *v* should be white noise.
 - The one-period-ahead forecast error of *y* should be white noise.
 - We sometimes call this forecast-error series the "fundamental underlying white noise series for *y*" or the "innovations" in *y*.
- The simplest autocorrelated series is the **first-order autoregressive (AR(1)) process**:
 - $y_t = \beta_0 + \beta_1 y_{t-1} + v_t$, where *e* is white noise.
 - In this case, our one-period-ahead forecast is $E[y_t | y_{t-1}] = \beta_0 + \beta_1 y_{t-1}$ and the forecast error is v_t .
 - For simplicity, suppose that we have removed the mean from *y* so that $\beta_0 = 0$.
 - Consider the effect of a one-time shock v_1 on the series y from time one on, assuming (for simplicity) that $y_0 = 0$ and all subsequent v values are also zero.
 - $y_1 = \beta_1(0) + \nu_1 = \nu_1$
 - $y_2 = \beta_1 y_1 + \nu_2 = \beta_1 \nu_1$
 - $y_3 = \beta_1 y_2 + \nu_3 = \beta_1^2 \nu_1$
 - $y_s = \beta_1^{s-1} \nu_1$.
 - This shows that the effect of the shock on *y* "goes away" over time only if
 |β₁| < 1.
 - The condition |β₁| < 1 is necessary for the AR(1) process to be stationary.
 - If β₁ = 1, then shocks to *y* are permanent. This series is called a random walk.
 - The random walk process can be written y_t = y_{t-1} + ν_t or Δy_t = ν_t. The first difference of a random walk is stationary and is white noise.
 - If *y* follows a stationary AR(1) process, then $\rho_1 = \beta_1, \rho_2 = \beta_1^2, ..., \rho_s = \beta_1^s$.

- One way to attempt to identify the appropriate specification for a timeseries variable is to examine the autocorrelation function of the series.
- If the autocorrelation function declines exponentially toward zero, then the series might follow an AR(1) process with positive β₁.
- A series with β₁ < 0 would oscillate back and forth between positive and negative responses to a shock.
 - The autocorrelations would also oscillate between positive and negative while converging to zero.

Assumptions of time-series regression

- Before we deal with issues of specifications of *y* and *x*, we will think about the problems that serially correlated error terms cause for OLS regression. (GHL's Section 9.3)
- Can estimate time-series regressions by OLS as long as y and x are stationary and x is exogenous.
 - **Exogeneity**: $E(e_t | x_t, x_{t-1}, ...) = 0.$
 - Strict exogeneity: $E(e_t | ..., x_{t+2}, x_{t+1}, x_t, x_{t-1}, x_{t-2}, ...) = 0.$
- Assumptions of time-series regression:
 - **TSMR2:** *y* and *x* are stationary and *x* is strictly exogenous
 - **TSMR3:** $E(e_t) = 0$
 - o **TSMR4:** $var(e_t) = \sigma^2$
 - **TSMR5:** $\operatorname{cov}(e_t, e_s) = 0, t \neq s$
 - **TSMR6:** $e_t \sim N(0, \sigma^2)$
- However, nearly all time-series regressions are prone to having serially correlated error terms, which violates TSMR5.
 - Omitted variables are probably serially correlated
- This is a particular form of violation of the IID assumption.
 - Observations are correlated with those of nearby periods
- As long as the other OLS assumptions are satisfied, this causes a problem not unlike heteroskedasticity
 - OLS is still unbiased and consistent
 - OLS is not efficient
 - OLS estimators of standard errors are biased, so cannot use ordinary *t* statistics for inference
- To some extent, adding more lags of *y* and *x* to the specification can reduce the severity of serial correlation.
- Two methods of dealing with serial correlation of the error term:

- GLS regression in which we transform the model to one whose error term is not serially correlated
 - This is analogous to weighted least squares (also a GLS procedure)
- Estimate by OLS but use standard error estimates that are robust to serial correlation

Detecting autocorrelation

- We can test the autocorrelations of a series to see if they are zero.
 - Asymptotically, √Tr_k ~ N(ρ_k,1), so we can compute this as a test statistic and test against the null hypothesis ρ_k = 0.
- **Breusch-Godfrey Lagrange multiplier test** for autocorrelation:
 - Regress *y* (or residuals) on *x* and lagged residuals (first-order, or more)
 - Use *F* test of residual coefficient(s) in *y* regression or TR^2 in residual regression as χ^2
- **Box-Ljung** *Q* **test** for null hypothesis that the first *k* autocorrelations are zero:

$$Q_k = T(T+2)\sum_{j=1}^k \frac{r_j^2}{T-j}$$
 is asymptotically χ_k^2 .

• **Durbin-Watson test** used to be the standard test for first-order autocorrelation, but was difficult because critical values depend on *x*. Not used much anymore.

Estimation with autocorrelated errors

- OLS with autocorrelated errors
 - Assumption TSMR4 is violated, which leads to inefficient estimators and biased standard errors just like in case of heteroskedasticity
 - **Important special case:** We will see that a common distributed lag model puts y_{t-1} on the right-hand side as a regressor. This causes special problems when there is serial correlation because
 - e_{t-1} is part of y_{t-1}
 - e_{t-1} is correlated with e_t
 - Therefore *e_t* is correlated with one of the regressors, which leads to bias and inconsistency in the coefficient estimators.
 - If we can transform the model into one that has no autocorrelation (for example, v_t if error term is $e_t = \rho e_{t-1} + v_t$), then we can get consistent OLS estimators as long as all the *x* variables are exogenous (but not necessarily strictly exogenous) with respect to *v*.
- HAC consistent standard errors (Newey-West)
 - As with White's heteroskedasticity consistent standard errors, we can correct the OLS standard errors for autocorrelation as well.

o We know that

$$b_{2} = \beta_{2} + \frac{\frac{1}{T} \sum_{i=1}^{T} (x_{i} - \overline{x}) e_{i}}{\frac{1}{T} \sum_{i=1}^{T} (x_{i} - \overline{x})^{2}}.$$

• In this formula, $\operatorname{plim} \overline{x} = \mu_X$, $\operatorname{plim} \left(\frac{1}{T} \sum_{i=1}^T (x_i - \overline{x})^2 \right) = \sigma_X^2$.

• So
$$\operatorname{plim}(b_2 - \beta_2) = \frac{\operatorname{plim}\left(\frac{1}{T}\sum_{i=1}^T (x_i - \mu_X)e_i\right)}{\sigma_X^2} = \frac{\operatorname{plim}(\overline{u})}{\sigma_X^2}, \text{ where } \overline{u} = \frac{1}{T}\sum_{i=1}^T u_i \text{ and }$$

$$u_t \equiv (X_t - \mu_X)e_t.$$

• And in large samples, $\operatorname{var}(b_2) = \operatorname{var}\left(\frac{\overline{u}}{\sigma_X^2}\right) = \frac{\operatorname{var}(\overline{u})}{\sigma_X^4}.$

• Under IID assumption, $\operatorname{var}(\overline{u}) = \frac{1}{T} \operatorname{var}(u_t) = \frac{\sigma_u^2}{T}$, and the formula

reduces to one we know from before.

- However, serial correlation means that the error terms are not IID (and x is usually not either), so this doesn't apply.
- In the case where there is serial correlation we have to take into account the covariance of the u_t terms:

$$\begin{aligned} \operatorname{var}(\overline{u}) &= \operatorname{var}\left(\frac{u_{1} + u_{2} + \dots + u_{T}}{T}\right) \\ &= \frac{1}{T^{2}} \left[\sum_{i=1}^{T} \sum_{j=1}^{T} E\left(u_{i}u_{j}\right) \right] \\ &= \frac{1}{T^{2}} \sum_{i=1}^{T} \left(\operatorname{var}\left(u_{i}\right) + \sum_{j \neq i} \operatorname{cov}\left(u_{i}, u_{j}\right) \right) \\ &= \frac{1}{T^{2}} \left[T \operatorname{var}\left(u_{t}\right) + 2\left(T - 1\right) \operatorname{cov}\left(u_{t}, u_{t-1}\right) + 2\left(T - 2\right) \operatorname{cov}\left(u_{t}, u_{t-2}\right) + \dots + 2 \operatorname{cov}\left(u_{t}, u_{t-(T-1)}\right) \right] \\ &= \frac{\sigma_{u}^{2}}{T} f_{T}, \end{aligned}$$

where

$$\begin{split} f_T &\equiv 1 + 2\sum_{j=1}^{T-1} \left(\frac{T-j}{T}\right) \operatorname{corr}\left(u_t, u_{t-j}\right) \\ &= 1 + 2\sum_{j=1}^{T-1} \left(\frac{T-j}{T}\right) \rho_j. \end{split}$$

• Thus, $\operatorname{var}(b_2) = \left[\frac{1}{T}\frac{\sigma_u^2}{\sigma_x^4}\right] f_T$, which expresses the variance as the product of the

no-autocorrelation variance and the f_T factor that corrects for autocorrelation.

- In order to implement this, we need to know f_T , which depends on the autocorrelations of u for orders 1 through T-1.
 - These are not known and must be estimated.
 - For ρ₁ we have lots of information because there are *T* 1 pairs of values for (*u_t*, *u_{t-1}*) in the sample.
 - For ρ_{T-1}, there is only one pair (u_t, u_{t-(T-1)})—namely (u_T, u₁)—on which to base an estimate.
 - The **Newey-West** procedure truncates the summation in f_T at some value m-1, so we estimate the first m-1 autocorrelations of v using the OLS

residuals and compute $\hat{f}_T = 1 + 2\sum_{j=1}^{m-1} \left(\frac{m-j}{m}\right) r_j$.

- *m* must be large enough to provide a reasonable correction but small enough relative to *T* to allow the *r* values to be estimated well.
 - Stock and Watson suggest choosing $m = 0.75T^{\frac{1}{3}}$ as a reasonable rule of thumb.
- To implement in Stata, use hac option in xtreg (with panel data) or postestimation command newey, lags(m)

• GLS with an AR(1) error term

• One of the oldest time-series models (and not used so much anymore) is the model in which e_t follows and AR(1) process:

 $y_t = \beta_0 + \beta_1 x_t + e_t$

$$e_t = \rho e_{t-1} + \nu_t,$$

where ε is a white-noise error term and $-1 < \rho < 1$.

- In practice, $\rho > 0$ nearly always
- GLS transforms the model into one with an error term that is not serially correlated.
- o Let

$$\begin{split} \tilde{y}_t = \begin{cases} y_t \sqrt{\left(1 - \rho^2\right)}, & t = 1, \\ y_t - \rho y_{t-1}, & t = 2, 3, \dots, T, \end{cases} \quad \tilde{x}_t = \begin{cases} x_t \sqrt{\left(1 - \rho^2\right)}, & t = 1, \\ x_t - \rho x_{t-1}, & t = 2, 3, \dots, T, \end{cases} \\ \tilde{e}_t = \begin{cases} e_t \sqrt{\left(1 - \rho^2\right)}, & t = 1, \\ e_t - \rho e_{t-1}, & t = 2, 3, \dots, T. \end{cases} \end{split}$$

- Then $\tilde{y}_t = (1-\rho)\beta_1 + \beta_2 \tilde{x}_t + \tilde{e}_t$.
 - The error term in this regression is equal to v_t for observations 2 through *T* and is a multiple of e₁ for the first observation.

- By assumption, v is white noise and values of v in periods after 1 are uncorrelated with e₁, so there is no serial correlation in this transformed model.
- If the other assumptions are satisfied, it can be estimated efficiently by OLS.
- But what is ρ ?
 - Need to estimate ρ to calculate feasible GLS estimator.
 - Traditional estimator for ρ is $\hat{\rho} = \operatorname{corr}(\hat{e}_t, \hat{e}_{t-1})$ using OLS residuals.
 - This estimation can be iterated to get a new estimate of p based on the GLS estimator and then re-do the transformation: repeat until converged.
- Two-step estimator using FGLS based on $\hat{\rho}$ is called the **Prais-Winsten** estimator (or **Cochrane-Orcutt** when first observation is dropped).
- Problems: ρ is not estimated consistently if e_t is correlated with x_t , which will always be the case if there is a lagged dependent variable present and may be the case if x is not strongly exogenous.
 - In this case, we can use nonlinear methods to estimate ρ and β jointly by search.
 - This is called the **Hildreth-Lu** method.
- In Stata, the prais command implements all of these methods (depending on option). Option corc does Cochrane-Orcutt; ssesearch does Hildreth-Lu; and the default is Prais-Winsten.
- You can also estimate this model with ρ as the coefficient on y_{t-1} in an OLS model, with or without the restriction implied in HGL's equation (9.44).

Distributed-lag models

- Modeling the **deterministic part** of a dynamic relationship between two variables
- In general, the distributed-lag model has the form $y_t = \alpha + \sum_{i=0}^{\infty} \beta_i x_{t-i} + e_t$. But of course, we

cannot estimate an infinite number of lag coefficients β_i , so we must either truncate or find another way to approximate an infinite lag structure.

- Multipliers
 - $\frac{\partial E(y_t)}{\partial x_{t-s}} = \beta_s$ is the *s*-period delay multiplier, telling how much a one-

time, temporary shock to x would be affecting y s periods later

β₀ is the "impact multiplier"

• $\sum_{r=0}^{s} \beta_r$ is the cumulative or "interim" multiplier after *s* periods. It

measures the cumulative effect of a permanent change in x on y s periods later.

• $\sum_{s=1}^{\infty} \beta_s$ is the "total multiplier" measuring the final cumulative effect of a

permanent change in x on y.

- We can easily have additional regressors with either the same or different lag structures.
- Finite distributed lags
 - $\circ \quad y_t = \alpha + \beta_0 x_t + \beta_1 x_{t-1} + \dots + \beta_q x_{t-q} + e_t = \alpha + \beta(L) x_t + e_t$
 - This is finite distributed-lag model of order q
 - Under assumptions TSMR1–6, the model can be estimated by OLS. If there is serial correlation, then the appropriate correction must be made to standard errors or a GLS model must be used.
 - Problems with finite DL model
 - If *x* is strongly autocorrelated, then collinearity will be a problem and it will be difficult to estimate individual lag weights accurately
 - Difficult to know appropriate lag length (can use AIC or SC)
 - If lags are long and sample is short, will lose lots of observations.
- Koyck lag: y is AR(1) with regressors

$$y_t = \delta + \theta_1 y_{t-1} + \delta_0 x_t + \nu$$

$$\frac{\partial y_t}{\partial y_t} = \delta_0$$

$$\frac{\partial x_t}{\partial y_{t+1}} = \theta_1 \delta_0$$

$$\frac{\partial y_{t+2}}{\partial x_t} = \theta_1^2 \delta_0$$
$$\frac{\partial y_{t+s}}{\partial x_t} = \theta_1^s \delta_0$$

Thus, dynamic multipliers start at δ_0 and decay exponentially to zero over infinite time. Thus, this is effectively a distributed lag of infinite length, but with only 2 parameters (plus intercept) to estimate.

- Cumulative multipliers are $\sum_{k=0}^{s} \frac{\partial y_{t+k}}{\partial x_t} = \delta_0 \sum_{k=0}^{s} \Theta_1^k$.
- Long-run effect of a permanent change is $\delta_0 \sum_{k=0}^{\infty} \theta_1^k = \frac{\delta_0}{1-\theta_1}$.
- Estimation has the potential problem of inconsistency if v_t is serially correlated.

- This is a serious problem, especially as some of the test statistics for serial correlation of the error are biased when the lagged dependent variable is present.
- Koyck lag is parsimonious and fits lots of lagged relationships well.
- With multiple regressors, the Koyck lag applies the same lag structure (rate of decay) to all regressors.
 - Is this reasonable for your application?
 - Example: delayed adjustment of factor inputs: can't stop using expensive factor more quickly than you start using cheaper factor.
- ARX(p) Model
 - We can generalize the Koyck lag model to longer lags:

 $y_t = \delta + \theta_1 y_{t-1} + \ldots + \theta_p y_{t-p} + \delta_0 X_t + \nu_t.$

- This can be written $\theta(L) y_t = \delta + \delta_0 x_t + v_t$.
- Same general principles apply:
 - Worry about stationarity of lag structure: roots of $\theta(L)$
 - If *v* is serially correlated, OLS will be biased and inconsistent
 - Dynamic multipliers are determined by coefficients of infinite lag polynomial [θ(*L*)]⁻¹
 - If more than on *x*, all have same lag structure
- How to determine length of lag *p*?
 - Can keep adding lags as long as θ_p is statistically significant
 - Can choose to max the Akaike information criterion (AIC) or Bayesian (Schwartz) information criterion (SC).
 - Note that regression can use as many as T-p observations, but should use the same number for all regressions with different p values in assessing information criteria.
 - AIC will choose longer lag than SC.
 - AIC came first, so is still used a lot
 - SC is asymptotically unbiased
 - Stata calculates info criteria by estat ic (after regression)

• ADL(p, q) Model: "Rational" lag

- We can also add lags to the *x* variable(s)
- $\circ \quad y_{t} = \delta_{0} + \theta_{1}y_{t-1} + \ldots + \theta_{p}y_{t-p} + \delta_{0}x_{t} + \delta_{1}x_{t-1} + \ldots + \delta_{q}x_{t-q} + v_{t}$
 - Can add more *x* variables with varying lag lengths

 $\theta(L)y_t = \delta_0 + \delta(L)x_t + v_t,$

$$^{\circ} \quad y_t = \frac{\delta_0}{\theta(L)} + \frac{\delta(L)}{\theta(L)} x_t + \frac{\nu_t}{\theta(L)}.$$

- Multipliers are the (infinite) coefficients on the lag polynomial $\frac{\delta(L)}{\theta(L)}$
- Stationarity depends only on $\theta(L)$, not on $\delta(L)$.
- Can easily estimate this by OLS assuming:
 - $E(v_t | y_{t-1}, y_{t-2}, ..., y_{t-p}, x_t, x_{t-1}, ..., x_{t-q}) = 0$
 - (y_t, x_t) has same mean, variance, and autocorrelations for all t
 - (y_t, x_t) and (y_{t-s}, x_{t-s}) become independent as $s \to \infty$
 - No perfect multicollinearity
- o These are general TSMR assumptions that apply to most time-series models.

Forecasting with time-series models

- With AR(p) model
 - $o \quad y_t = \delta + \theta_1 y_{t-1} + \theta_2 y_{t-2} + \dots + \theta_p y_{t-p} + v_t, \text{ with } v \text{ assumed to be serially}$ uncorrelated.
 - We have observations for t = 1, 2, ..., T
 - Forecast for T + 1: $\hat{y}_{T+1} = \hat{\delta} + \hat{\theta}_1 y_T + \hat{\theta}_2 y_{T-1} + ... + \hat{\theta}_p y_{T-p+1}$ with expected value of ν at zero because of no serial correlation
 - If error term were autoregressive, then conditional expectation of ν_{T+1} would be ρν_T, so would include residual of observation T

• Forecast error is
$$u_1 = y_{T+1} - \hat{y}_{T+1} = (\delta - \hat{\delta}) + \sum_{s=1}^{p} (\theta_s - \hat{\theta}_s) y_{T+1-s} + v_{T+1}$$

• HGL assume that $\operatorname{var}(v_{T+1}) >> \operatorname{var}\left[\left(\delta - \hat{\delta}\right) + \sum_{s=1}^{p} \left(\theta_{s} - \hat{\theta}_{s}\right) y_{T+1-s}\right]$, so

they ignore the latter.

- I'm not willing to ignore this (although it is often true that the variance of the error is larger, as in Problem 6.17.
- I will write $e_{b,k} = (\delta \hat{\delta}) + \sum_{s=1}^{p} (\theta_s \hat{\theta}_s) y_{T+k-s}$ and $\operatorname{var}(e_{b,k})$ to be that
 - component of the k-period-ahead forecast and keep it in the equation
- $\bullet \quad u_1 = e_{b,1} + v_{T+1,2}$
- $\operatorname{var}(u_1) = \operatorname{var}(e_{b,1}) + \sigma_v^2$
- What about forecast for T + 2?
 - y_{T+1} appears on the right-hand side of the T+2 equation, so we substitute our one-period-ahead forecast of it:

$$\hat{y}_{T+2} = \hat{\delta} + \hat{\theta}_1 \hat{y}_{T+1} + \hat{\theta}_2 y_T + \ldots + \hat{\theta}_p y_{T+2-p}$$

• Forecast error is

$$u_{2} = y_{T+2} - \hat{y}_{T+2} = (\delta - \hat{\delta}) + \theta_{1} (\hat{y}_{T+1} - y_{T+1}) + \sum_{s=1}^{p} (\theta_{s} - \hat{\theta}_{s}) y_{T+2-s} + v_{T+2}$$

= $e_{b,2} + \theta_{1} e_{b,1} + v_{T+2} + \theta_{1} v_{T+1}.$

- Variance of forecast error is $\operatorname{var}(u_2) = \operatorname{var}(e_{b,2}) + \theta_1^2 \operatorname{var}(e_{b,1}) + (1 + \theta_1^2) \sigma_{\nu}^2.$
- Similarly,

$$\operatorname{var}(u_{3}) = \operatorname{var}(e_{b,3}) + \theta_{1}^{2} \operatorname{var}(e_{b,2}) + (\theta_{1}^{2} + \theta_{2})^{2} \operatorname{var}(e_{b,1}) + (1 + \theta_{1}^{2} + (\theta_{2} + \theta_{1}^{2})^{2}) \sigma_{\nu}^{2}$$