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Section 9 Regression with Stationary Time 

Series 

How time-series regression differs from cross-section 

 Natural ordering of observations contains information 

o Random reshuffling of observations would obscure dynamic economic 

relationship, but leave traditional regression unchanged 

o How can we incorporate this dynamic information into our regression model? 

 We usually think of the data as being drawn from a potentially infinite data-generating 

process rather than from a finite population of observations. 

 Variables are often call “time series” or just “series” rather than variables 

o Index observations by time period t 

o Number of observations = T 

 Dynamic relationship means that not all of the effects of xt occur in period t. 

o A change in xt is likely to affect yt + 1, yt + 2, etc. 

o By the same logic, yt depends not only on xt but also on xt – 1, xt – 2, etc. 

o We model these dynamic relationships with distributed lag models, in which 

 1 2, , ,t t t ty f x x x   . 

 We will need to focus on the dynamic elements of both the deterministic relationship 

between the variables and the stochastic relationship (error term) 

 The dynamic ordering of observations means that the error terms are usually serially 

correlated (or autocorrelated over time) 

o Shocks to the regression are unlikely to completely disappear before the 

following period 

 Exception: stock market returns, where investors should respond to any 

shock and make sure that next period’s return is not predictable 

o Two observations are likely to be more highly correlated if they are close to the 

same time than if they are more widely separated. 

o Covariance matrix of error term will have non-zero off-diagonal elements, with 

elements lying closest to the diagonal likely being substantially positive and 

decreasing as one moves away from the diagonal. 

 Nonstationary time series create problems for econometrics. 

o We will study implications of and methods for dealing with nonstationarity in 

Section 12. 

o Example will illustrate nature of problem (“spurious regressions”) 

 Regression of AL attendance on Botswana real GDP 

 Correlation = 0.9656 
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 R2 = 0.9323 

 Coefficient has t of 24.90. 

 Good regression? 
     
  Source |       SS       df       MS              Number of obs =      47 
-------------+------------------------------           F(  1,    45) =  619.89 
       Model |  3.4342e+15     1  3.4342e+15           Prob > F      =  0.0000 
    Residual |  2.4930e+14    45  5.5400e+12           R-squared     =  0.9323 
-------------+------------------------------           Adj R-squared =  0.9308 
       Total |  3.6835e+15    46  8.0077e+13           Root MSE      =  2.4e+06 
 
------------------------------------------------------------------------------ 
    ALAttend |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      rgdpl2 |    3285.11   131.9447    24.90   0.000      3019.36     3550.86 
       _cons |    8029710   640681.3    12.53   0.000      6739311     9320108 
------------------------------------------------------------------------------ 

 

o Correlation is spurious because both series are trending upward, so most of 

each series’ deviation from mean is due to separate trends. 

o Much of the last 20 years in econometrics has been devoted to understanding 

how to deal with nonstationary time series. 

o We will study this intensively in a few weeks. 

o Nonstationarity forces us to remove the common trend (often by 

differencing) before interpreting the correlation or regression 

Lag operators and differences 

 With time-series data we are often interested in the relationship among variables at 

different points in time. 

 Let xt be the observation corresponding to time period t. 

o The first lag of x is the preceding observation: xt – 1. 

o We sometimes use the lag operator L(xt) or Lxt  xt – 1 to represent lags. 

o We often use higher-order lags: Lsx  xt – s. 

 The first difference of x is the difference between x and its lag: 

o xt  xt – xt – 1 = (1 – L)xt 

o Higher-order differences are also used:  

2xt = (xt) = (xt – xt – 1) – (xt – 1 – xt – 2) = xt – 2xt – 1 + xt – 2  

= (1 – L)2xt = (1 – 2L + L2)xt 

o sxt = (1 – L)sxt  

 Difference of the log of a variable is approximately equal to the variable’s growth rate: 

(lnxt) = lnxt – lnxt – 1 = ln(xt /xt – 1) ≈ xt /xt – 1 – 1 = xt / xt 

o Log difference is exactly the continuously-compounded growth rate 

o The discrete growth-rate formula xt / xt is the formula for once-per-period 

compounded growth 
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 Lags and differences in Stata 

o First you must define the data to be time series: tsset year 

 This will correctly deal with missing years in the year variable. 

 Can define a variable for quarterly or monthly data and set format to 

print out appropriately. 

 For example, suppose your data have a variable called month and one 

called year. You want to combine into a single time variable called time. 

 gen time = ym(year, month) 

 This variable will have a %tm format and will print out like 

2010m4 for April 2010. 

 You can then do tsset time 

o Once you have the time variable set, you can create lags with the lag operator l. 

and differences with d. 

 For example, last period’s value of x is l.x 

 The change in x between now and last period is d.x 

 Higher-order lags and differences can be obtained with l3.x for third lag 

or d2.x for second difference. 

Autocovariance and autocorrelation 

 Autocovariance of order s is cov(xt, xt – s) 

o We generally assume that the autocovariance depends only on s, not on t. 

o This is analogous to our Assumption #0: that all observations follow the same 

model (or were generated by the same data-generating process) 

o This is one element of a time series being stationary 

 Autocorrelation of order s (s) is the correlation coefficient between xt and xt – s. 

o 
 
 

cov ,

var
t t k

k
t

x x

x
   
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 We sometimes subtract one from both denominators, or sometimes 

ignore the different fractions in front of the summations since their ratio 

goes to 1 as T goes to ∞. 

 k as a function of k is called the autocorrelation function of the series and its plot is 

often called a correlogram. 

Some simple univariate time-series models 

 We sometimes represent a variable’s time-series behavior with a univariate model. 
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 White noise: The simplest univariate time-series process is called white noise yt = vt, 

where vt is a mean-zero IID error (usually normal). 

o The key point here is the autocorrelations of white noise are all zero (except, of 

course, for 0, which is always 1).  

o Very few economic time series are white noise. 

 Changes in stock prices are probably one. 

o We use white noise as a basic building block for more useful time series: 

 Consider problem of forecasting yt conditional on all past values of y. 

  1 2| , ,t t t t ty E y y y v    

 Since any part of the past behavior of y that would help to predict the 

current y should be accounted for in the expectation part, the error term v 

should be white noise. 

 The one-period-ahead forecast error of y should be white noise. 

 We sometimes call this forecast-error series the “fundamental underlying 

white noise series for y” or the “innovations” in y. 

 The simplest autocorrelated series is the first-order autoregressive (AR(1)) process: 

0 1 1 ,t t ty y v     where e is white noise. 

o In this case, our one-period-ahead forecast is  1 0 1 1|t t tE y y y     and the 

forecast error is vt. 

o For simplicity, suppose that we have removed the mean from y so that 0 = 0. 

 Consider the effect of a one-time shock v1 on the series y from time one 

on, assuming (for simplicity) that y0 = 0 and all subsequent v values are 

also zero. 

  1 1 1 10y v v    

 2 1 1 2 1 1y y v v    

 2
3 1 2 3 1 1y y v v    

 1
1 1.
s

sy v  

 This shows that the effect of the shock on y “goes away” over time only if 

|1| < 1. 

 The condition |1| < 1 is necessary for the AR(1) process to be 

stationary. 

 If 1 = 1, then shocks to y are permanent. This series is called a random 

walk.  

 The random walk process can be written 1t t ty y v   or 

.t ty v   The first difference of a random walk is stationary and 

is white noise. 

o If y follows a stationary AR(1) process, then 1 = 1, 2 = 2
1 , …, 1

s
s  . 
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 One way to attempt to identify the appropriate specification for a time-

series variable is to examine the autocorrelation function of the series. 

 If the autocorrelation function declines exponentially toward zero, then 

the series might follow an AR(1) process with positive 1. 

 A series with 1 < 0 would oscillate back and forth between positive and 

negative responses to a shock. 

 The autocorrelations would also oscillate between positive and 

negative while converging to zero. 

Assumptions of time-series regression 

 Before we deal with issues of specifications of y and x, we will think about the problems 

that serially correlated error terms cause for OLS regression. (GHL’s Section 9.3) 

 Can estimate time-series regressions by OLS as long as y and x are stationary and x is 

exogenous. 

o Exogeneity:  1| , , 0.t t tE e x x    

o Strict exogeneity:  2 1 1 2| , , , , , , 0.t t t t t tE e x x x x x       

 Assumptions of time-series regression: 

o TSMR2: y and x are stationary and x is strictly exogenous 

o TSMR3:   0tE e   

o TSMR4:   2var te    

o TSMR5:  cov , 0,t se e t s   

o TSMR6:  2~ 0,te N   

 However, nearly all time-series regressions are prone to having serially correlated error 

terms, which violates TSMR5. 

o Omitted variables are probably serially correlated 

 This is a particular form of violation of the IID assumption.  

o Observations are correlated with those of nearby periods 

 As long as the other OLS assumptions are satisfied, this causes a problem not unlike 

heteroskedasticity 

o OLS is still unbiased and consistent 

o OLS is not efficient 

o OLS estimators of standard errors are biased, so cannot use ordinary t statistics 

for inference 

 To some extent, adding more lags of y and x to the specification can reduce the severity 

of serial correlation. 

 Two methods of dealing with serial correlation of the error term: 
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o GLS regression in which we transform the model to one whose error term is not 

serially correlated  

 This is analogous to weighted least squares (also a GLS procedure) 

o Estimate by OLS but use standard error estimates that are robust to serial 

correlation 

Detecting autocorrelation 

o We can test the autocorrelations of a series to see if they are zero. 

 Asymptotically,  ~ ,1k kT r N  , so we can compute this as a test 

statistic and test against the null hypothesis k = 0. 

o Breusch-Godfrey Lagrange multiplier test for autocorrelation: 

 Regress y (or residuals) on x and lagged residuals (first-order, or more) 

 Use F test of residual coefficient(s) in y regression or TR2 in residual 

regression as 2 

o Box-Ljung Q test for null hypothesis that the first k autocorrelations are zero: 

 
2

1

2
k

j
k

j

r
Q T T

T j

 
  is asymptotically 2.k  

o Durbin-Watson test used to be the standard test for first-order autocorrelation, 

but was difficult because critical values depend on x. Not used much anymore. 

Estimation with autocorrelated errors 

 OLS with autocorrelated errors 

o Assumption TSMR4 is violated, which leads to inefficient estimators and biased 

standard errors just like in case of heteroskedasticity 

o Important special case: We will see that a common distributed lag model puts 

yt – 1 on the right-hand side as a regressor. This causes special problems when 

there is serial correlation because 

 1te   is part of 1ty   

 1te   is correlated with et 

 Therefore et is correlated with one of the regressors, which leads to bias 

and inconsistency in the coefficient estimators. 

 If we can transform the model into one that has no autocorrelation (for 

example, vt if error term is 1t t te e v   ), then we can get consistent OLS 

estimators as long as all the x variables are exogenous (but not necessarily 

strictly exogenous) with respect to v. 

 HAC consistent standard errors (Newey-West) 

o As with White’s heteroskedasticity consistent standard errors, we can correct the 

OLS standard errors for autocorrelation as well. 
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o We know that  

 

 
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o In this formula,  2 2

1

1
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T 
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1
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u u
T 

   and 

  .t t X tu X e   

o And in large samples,    
2 2 4

var
var var .

X X

uu
b

 
    

 

 Under IID assumption,    
21

var var ,u
tu u

T T


   and the formula 

reduces to one we know from before. 

 However, serial correlation means that the error terms are not IID (and x 

is usually not either), so this doesn’t apply. 

o In the case where there is serial correlation we have to take into account the 

covariance of the ut terms: 
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 
1

1

1

1

1 2 corr ,

1 2 .

T

T t t j
j

T

j
j

T j
f u u

T

T j
T










    
 

    
 




 

o Thus,  
2

2 4

1
var ,u

T
X

b f
T

 
   

 which expresses the variance as the product of the 

no-autocorrelation variance and the fT factor that corrects for autocorrelation. 



~ 89 ~ 

 

o In order to implement this, we need to know fT, which depends on the 

autocorrelations of u for orders 1 through T – 1. 

 These are not known and must be estimated. 

 For 1 we have lots of information because there are T – 1 pairs of values 

for (ut, ut – 1) in the sample. 

 For T – 1, there is only one pair (ut, ut – (T –1))—namely (uT, u1)—on which 

to base an estimate. 

 The Newey-West procedure truncates the summation in fT at some value 

m – 1, so we estimate the first m – 1 autocorrelations of v using the OLS 

residuals and compute 
1

1

ˆ 1 2 .
m

T j
j

m j
f r

m





    
 

  

 m must be large enough to provide a reasonable correction but small 

enough relative to T to allow the r values to be estimated well. 

 Stock and Watson suggest choosing 
1
30.75m T  as a reasonable 

rule of thumb. 

o To implement in Stata, use hac option in xtreg (with panel data) or post-

estimation command newey , lags(m) 

 GLS with an AR(1) error term 

o One of the oldest time-series models (and not used so much anymore) is the 

model in which et follows and AR(1) process: 

0 1

1 ,
t t t

t t t

y x e

e e v

  
 

 

where  is a white-noise error term and –1 <  < 1. 

 In practice,  > 0 nearly always 

o GLS transforms the model into one with an error term that is not serially 

correlated. 

o Let  
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o Then   1 21 .t t ty x e        

 The error term in this regression is equal to vt for observations 2 through 

T and is a multiple of e1 for the first observation.  
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 By assumption, v is white noise and values of v in periods after 1 are 

uncorrelated with e1, so there is no serial correlation in this transformed 

model. 

 If the other assumptions are satisfied, it can be estimated efficiently by 

OLS. 

o But what is ? 

 Need to estimate  to calculate feasible GLS estimator. 

 Traditional estimator for  is  1ˆ ˆ ˆcorr ,t te e   using OLS residuals. 

 This estimation can be iterated to get a new estimate of  based on the 

GLS estimator and then re-do the transformation: repeat until converged. 

o Two-step estimator using FGLS based on ̂  is called the Prais-Winsten 

estimator (or Cochrane-Orcutt when first observation is dropped). 

o Problems:  is not estimated consistently if et is correlated with xt, which will 

always be the case if there is a lagged dependent variable present and may be the 

case if x is not strongly exogenous. 

 In this case, we can use nonlinear methods to estimate  and  jointly by 

search. 

 This is called the Hildreth-Lu method. 

o In Stata, the prais command implements all of these methods (depending on 

option). Option corc does Cochrane-Orcutt; ssesearch does Hildreth-Lu; and the 

default is Prais-Winsten. 

o You can also estimate this model with  as the coefficient on yt – 1 in an OLS 

model, with or without the restriction implied in HGL’s equation (9.44). 

Distributed-lag models 

 Modeling the deterministic part of a dynamic relationship between two variables 

 In general, the distributed-lag model has the form 
0

t i t i t
i

y x e





     . But of course, we 

cannot estimate an infinite number of lag coefficients i, so we must either truncate or 

find another way to approximate an infinite lag structure. 

o Multipliers 

 
 t

s
t s

E y

x 


 


 is the s-period delay multiplier, telling how much a one-

time, temporary shock to x would be affecting y s periods later 

 0 is the “impact multiplier” 
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 
0

s

r
r 

  is the cumulative or “interim” multiplier after s periods. It 

measures the cumulative effect of a permanent change in x on y s periods 

later. 

 
1

s
s





  is the “total multiplier” measuring the final cumulative effect of a 

permanent change in x on y. 

o We can easily have additional regressors with either the same or different lag 

structures. 

 Finite distributed lags 

o  0 1 1 ...t t t q t q t t ty x x x e L x e             

o This is finite distributed-lag model of order q 

o Under assumptions TSMR1–6, the model can be estimated by OLS. If there is 

serial correlation, then the appropriate correction must be made to standard 

errors or a GLS model must be used. 

o Problems with finite DL model 

 If x is strongly autocorrelated, then collinearity will be a problem and it 

will be difficult to estimate individual lag weights accurately 

 Difficult to know appropriate lag length (can use AIC or SC) 

 If lags are long and sample is short, will lose lots of observations. 

 Koyck lag: y is AR(1) with regressors 

o 1 1 0t t t ty y x v     

o 
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Thus, dynamic multipliers start at 0 and decay exponentially to zero over 

infinite time. Thus, this is effectively a distributed lag of infinite length, but with 

only 2 parameters (plus intercept) to estimate. 

o Cumulative multipliers are 
0 1

0 0

.
s s

kt k

k kt

y
x


 


  

   

o Long-run effect of a permanent change is 0
0 1

0 1

.
1

k

k






  

   

o Estimation has the potential problem of inconsistency if vt is serially correlated. 



~ 92 ~ 

 

 This is a serious problem, especially as some of the test statistics for serial 

correlation of the error are biased when the lagged dependent variable is 

present. 

o Koyck lag is parsimonious and fits lots of lagged relationships well. 

o With multiple regressors, the Koyck lag applies the same lag structure (rate of 

decay) to all regressors. 

 Is this reasonable for your application? 

 Example: delayed adjustment of factor inputs: can’t stop using expensive 

factor more quickly than you start using cheaper factor. 

 ARX(p) Model 

o We can generalize the Koyck lag model to longer lags: 

1 1 0 .t t p t p t ty y y X v            

o This can be written   0 .t t tL y x v      

o Same general principles apply: 

 Worry about stationarity of lag structure: roots of (L) 

 If v is serially correlated, OLS will be biased and inconsistent 

 Dynamic multipliers are determined by coefficients of infinite lag 

polynomial [(L)]–1 

 If more than on x, all have same lag structure 

o How to determine length of lag p? 

 Can keep adding lags as long as p is statistically significant 

 Can choose to max the Akaike information criterion (AIC) or Bayesian 

(Schwartz) information criterion (SC). 

 Note that regression can use as many as T – p observations, but should 

use the same number for all regressions with different p values in 

assessing information criteria. 

 AIC will choose longer lag than SC. 

 AIC came first, so is still used a lot 

 SC is asymptotically unbiased 

 Stata calculates info criteria by estat ic (after regression) 

 ADL(p, q) Model: “Rational” lag 

o We can also add lags to the x variable(s) 

o 0 1 1 0 1 1t t p t p t t q t q ty y y x x x v                    

 Can add more x variables with varying lag lengths 

o 

   

 
 
   

0

0

,

.

t t t

t
t t

L y L x v

L v
y x

L L L

     


  
  
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 Multipliers are the (infinite) coefficients on the lag polynomial 
 
 
L

L




 

o Stationarity depends only on (L), not on (L). 

o Can easily estimate this by OLS assuming: 

  1 2 1| , , , , , , , 0t t t t p t t t qE v y y y x x x        

 (yt, xt) has same mean, variance, and autocorrelations for all t 

 (yt, xt) and (yt – s, xt – s) become independent as s  ∞ 

 No perfect multicollinearity 

o These are general TSMR assumptions that apply to most time-series models. 

Forecasting with time-series models 

 With AR(p) model 

o 1 1 2 2 ... ,t t t p t p ty y y y v             with v assumed to be serially 

uncorrelated. 

o We have observations for t = 1, 2, …, T 

o Forecast for T + 1: 1 1 2 1 1
ˆ ˆ ˆ ˆˆ ...T T T p T py y y y             with expected value 

of v at zero because of no serial correlation 

 If error term were autoregressive, then conditional expectation of 

vT + 1 would be vT, so would include residual of observation T 

o Forecast error is    1 1 1 1 1
1

ˆ ˆˆ
p

T T s s T s T
s

u y y y v    


            

 HGL assume that      1 1
1

ˆ ˆvar var ,
p

T s s T s
s

v y  


 
        

 
  so 

they ignore the latter. 

 I’m not willing to ignore this (although it is often true that the 

variance of the error is larger, as in Problem 6.17. 

 I will write    ,
1

ˆ ˆ
p

b k s s T k s
s

e y  


        and   ,var b ke  to be that 

component of the k-period-ahead forecast and keep it in the equation 

 1 ,1 1,b Tu e v    

     2
1 ,1var var b vu e    

o What about forecast for T + 2? 

 yT + 1 appears on the right-hand side of the T+ 2 equation, so we 

substitute our one-period-ahead forecast of it: 

2 1 1 2 2
ˆ ˆ ˆ ˆˆ ˆ ...T T T p T py y y y             
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 Forecast error is 

     2 2 2 1 1 1 2 2
1

,2 1 ,1 2 1 1

ˆ ˆˆ ˆ

.

p

T T T T s s T s T
s

b b T T

u y y y y y v

e e v v

      


 

             

     


 

 Variance of forecast error is 

       2 2 2
2 ,2 1 ,1 1var var var 1 .b b vu e e        

 Similarly, 

            2 22 2 2 2 2
3 ,3 1 ,2 1 2 ,1 1 2 1var var var var 1b b b vu e e e              

 

 


