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Section 6 Functional Form and Nonlinearities 
This is a good place to remind ourselves of Assumption #0: That all observations follow the 

same model. 

Levels of measurement and kinds of variables 

 There are (at least) three essential kinds of variables in econometrics 

o Interval (or cardinal) variables are the “usual” kind of variables that are 

continuous and where the numbers actually measure something. 

 Differences are meaningful: An income of $70,000 exceeds an income of 

$60,000 by the same amount as an income of $50,000 exceeds an income 

of $40,000 

 With interval variables, we can talk meaningfully about continuous 

mathematical functions and partial derivatives 

o Ordinal variables take on several ordered values, but differences are not 

meaningful. 

 It is a scale on which we know which direction different values are from 

one another, but not how far each adjacent pair is apart. 

 Example: highest academic action taken against a student. 

 We know that dismissal is worse than denial of registration, 

denial is worse than probation, probation is worse than warning, 

and warning is worse than no action. 

 We don’t know how much worse each is than the adjacent action. 

Denial may be a bigger step from probation than probation is 

from warning. 

 
 

 With ordinal variables, we can talk meaningfully about how a change in 

another variable would move this variable along its scale, but there is no 

easy single-number translation into how that movement on the scale 

would translate into the underlying ordinal levels of the variable because 

we don’t know a priori how far they are apart. (Econometrics allows us 

to estimate this if we use proper procedures.)  

 Are GPA and SAT scores interval or ordinal? 

o Categorical variables are those that have several possible outcomes but where 

those outcomes cannot even be ranked ordinally.  

Scale of actions 

No action Warning Probation Deny registration Dismissal 
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 For these variables, we just have to treat the outcomes as separate 

possibilities and cannot meaningfully put them on a scale at all. 

 Example: Choosing to attend Reed vs. another school would be a two-

outcome categorical variable. (Choosing Reed vs. L&C vs. another 

school would be three-outcome variable.) 

 Sex, ethnicity, and many other variables are categorical. 

Dummy (binary or indicator) independent variables 

 Dummy variables are (yes, no) variables. We traditionally give the value 1 to yes and 0 

to no. 

 Dummy variables are used to model categorical variables as dependent or explanatory 

variables and ordinal variables as explanatory variables. 

o When there are only two possible outcomes, a single dummy variable is 

sufficient (e.g., sex, ignoring the transgendered). 

o When there are M > 2 outcomes, we need M – 1 dummy variables: 

 Region  {Northeast, South, Midwest, West} 

 Need dummies for Northeast, South, Midwest. 

 Don’t need dummy for West because we can tell those observations from 

the fact that they are zero for the other three. 

 If we include all four dummies, they will add up to 1, meaning perfect 

multicollinearity in a regression that also includes an intercept term. 

 While dummy variables are often very useful in multiple regressions (with more than one 

regressor), they are limited in simple regression, but have a special interpretation. 

o Suppose that D is a dummy variable for sex with D = 1 being male. 

o Consider the model 1 2 .i i iy D e    For females, D = 0 and the expected value 

of y is 1. For males, D = 1 and the expected value of y is 1 + 2. Thus, 1 is the 

difference between the expected y for males and females. 

o A test of the null hypothesis 2 = 0 would be a test of whether males and females 

have the same average y. 

 This is equivalent to the t test for the equality of means and is a simple 

application of “analysis of variance.” 

 When there are other variables present, a dummy variable shifts the intercept of the 

relationship between y and the other variables upward or downward depending on the 

value of the dummy. (Slope is assumed to be the same.) 

 Consider the following example: 1 2lnW ED   to estimate the effect of an additional 

year of education on the wage. 

o Wages may differ across sexes 

 To allow the function to vary by a constant amount between males and 

females: 1 2 3lnW ED MALE    
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 For females: 1 2lnW ED   

 For males:  1 3 2lnW ED     

 Thus, the intercept is different for males than for females, but the slope is 

the same, meaning that we have assumed that the effect of education on 

wages is the same for males and females. 

o What if we include a FEMALE dummy as well? 

 1 2 3 4lnW ED MALE FEMALE     

 This would add nothing of value to the regression because we already 

know the difference between males and females from 3. 

 11MALE FEMALE x    so there is perfect multicollinearity: XX is 

singular and the inverse does not exist. 

 Statistical algorithms will either break down or (like Stata) delete one of 

the collinear variables. 

o How would this work with the regional dummies? 

 To model differences in intercept, we include dummies for three of four 

regions: 1 2 3 4 5lnW ED Northeast South Midwest      

 Again, including all four results in collinearity 

 The intercept term 1 is the intercept for the omitted category (West) 

 The intercept for South is 1 + 4, so 4 measures whether the intercept is 

different for the South vs. the West. 

 Choose the omitted category to be the one against which you want to test 

others, then the t test is easier 

 To test whether region matters at all, do a joint F test of 3 = 4 = 5 = 0. 

 If we have a dummy variable that is 1 for only a single observation (presumably in 

multiple regression), then the residual for that observation will be zero and the coefficient 

of that dummy variable will have the value of the residual of that observation in an 

otherwise identical regression that excludes the dummy. 

 Dummy dependent variables can be estimated by OLS using the linear probability 

model, but this is not the best way to estimate these models, so we won’t go into any 

details. 

Interaction effects 

o What if the effect of education differs for males and females? 

 In this case, we need an interaction variable. 

  1 2 3 4lnW ED MALE ED MALE       

 Equation for females: 1 2lnW ED   

 Equation for males:    1 3 2 4lnW ED       
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 Thus, 3 is the difference in the intercept and 4 is the difference in the slopes. 

 Running this regression is equivalent to running separate regressions for the male 

and female samples 

 The female sample will have an intercept estimate of b1 and a slope 

estimate of b2 

 The male sample will have an intercept estimate of b1 + b3 and a slope 

estimate of b2 + b4 

 Running them together requires that the variance of the error term for 

males and females be the same 

 But running them together allows testing the hypotheses 3 = 0 and 4 = 

0, which are often of interest. 

 The joint test that both (all) coefficients are the same across the two 

subsamples is called a Chow test. 

o Allowing the slope (education effect) to vary across regions would involve interaction 

terms between ED and each of the three regional dummies. 

o We can also interact dummies with one another: 

 1 2 3 4 5lnW ED MALE South MALE South        

 For non-South females: 1 2lnW ED   

 For South females: 1 4 2lnW ED    

 For non-South males: 1 3 2lnW ED    

 For South males: 1 3 4 5 2lnW ED      

 South effect for females = 4 

 South effect for males = 4 + 5 

 Male effect for non-South = 3 

 Male effect for South = 3 + 5 

 Thus, 5 measures the difference in the male effect between South and non-

South, or the difference in the South effect between males and females. 

 We can also interact continuous variables 

o  1 2 3 4lnW ED AGE ED AGE       

o 2 4

lnW
AGE

ED


   


 

o 3 4

lnW
ED

AGE


   


 

o Thus, 4 measure the effect of age on the value of an additional year of 

education, or the effect of education on the value of an additional year of age. 
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Treatment effects 

 Correlation does not imply causation, even if one event occurred before the other. 

o Hospital stay vs. health status example from text 

o Selection bias occurs when the sample of people is not randomly chosen from 

the population. 

 Wage equation example: only working people have observed wages, but 

people with higher wage offers are more likely to work 

 Randomized controlled experiments are gold standard of statistical procedures, but are 

not often available in economics. 

o Unless we have the resources to create our own data, we must use natural 

experiments arising out of natural variation in observed datasets. 

o Randomized experiments randomly place observations into treatment group or 

control group. 

o Often use “double-blind” technique in medical treatments where neither the 

patient nor the doctor knows which group the patient is in: avoiding the 

Hawthorne effect. 

 Problems with experiments: 

o Lack of randomization can lead to correlation between group selection and other 

variables. 

 Can control for this by controlling for these variables by including them 

in a regression. 

o Partial compliance 

 Did the treatment and control groups actually do what they were 

supposed to do? 

 Did the job-training selectees actually attend training? 

 Did the patient take the drug? 

 Is this behavior correlated with e? 

o Attrition 

 Some drop out of both groups during the experiment. 

 Were they random or did people with high (or low) values of e drop out? 

o Hawthorne effect 

 Double-blind is not possible in many experiments. 

 Experimenter bias may result from incentives to make results look 

significant. 

 Difference estimator 

o Let di = 1 for observations in treatment group, 0 for those in control group. 

o 1 2i i iy d e    

o 2 measures the “treatment effect” 
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o OLS regression will give b2 = 1 0y y , the differences of the means of the two 

groups. 

o Do we need other regressors?  

 Not if selection is random because there is no omitted variable bias if the 

omitted regressors are uncorrelated with the variable of interest (d). 

 If selection is non-random, but all the variables that determine the 

selection are observable and added to the regression, then our dummy-

variable coefficient will still be unbiased because there are no omitted 

variables that are correlated with d. 

 If we allow people to “select into” the treatment and control groups, then 

there will be other characteristics (those that affect the choice) that will be 

correlated with d. If any of these variables are also correlated with y, then 

we have omitted variable bias ~ sample selection bias. 

 It may still be useful to include other regressors because they will lower 

the overall variance of the equation and reduce the amount of variation 

that d needs to explain. 

 Interaction terms between treatment dummy and other regressors would 

allow us to see how treatment effect might vary with subject 

characteristics. 

 Differences-in-differences estimator 

o When we only have natural experiments, we can sometimes do before and after 

comparisons between the control and treatment groups and get valid estimators 

under appropriate conditions. 

o In order to do this we must have two observations (before and after) for each unit 

and we must be able to assume that the beforeafter change is independent of 

any omitted variable correlated with treatment status. 

o The differences-in-differences estimator uses the model 

 1 2 3it i ity d t d t e        , where t = 0 for “before” and 1 for “after” and d 

is the treatment dummy we used above. 

o 
   
   

, , , ,

, , , ,

ˆ
treatment after control after treatment before control before

treatment after treatment before control after control before

y y y y

y y y y

    

   
 

o You can also use other controls to reduce variance here 

o Differences-in-differences estimator is example of using panel data, which vary 

both across time and across units. 

 We will study methods for use with panel data latter on. 
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Nonlinearity in variables vs. nonlinearity in parameters 

 Solving for the OLS estimator required that we differentiate the LS or likelihood function 

with respect to the parameters. 

 In a model that is linear in parameters, the LS objective function will be quadratic, so 

that the least-squares normal equations based on setting the first derivatives to zero are 

linear in the coefficient estimator. 

o This means that we can use linear algebra to solve for the coefficient estimator. 

 If the model is nonlinear in parameters, then the LS objective function will not be 

quadratic and the normal equations will not be linear in parameters, so numerical search 

methods must be used for solution. 

o This is called nonlinear LS and is much more computationally difficult and 

potentially problematic than the linear model. (Covered in S&W appendix to Ch. 

8.) 

o There are times when nonlinear LS is necessary, but we try to avoid it whenever 

possible. 

 There are many models that are nonlinear in variables but linear in parameters. These 

models are easy to deal with: we can transform the variables and use linear OLS 

methods. 

 If a model is nonlinear in its regressors (or with a nonlinear dependent variable), then the 

coefficient on the variable is no longer y/xj.  

o Instead, we have to calculate y/xj as a function of the coefficients and the 

values of X. 

o This will vary according to the functional form, so we’ll talk about the partial 

effects for individual forms as we discuss them. 

 The choice of functional form should be guided by theory, but theory rarely provides a 

unique specification.  

o It is often necessary to try various functional forms to see which one seems to fit 

the best. 

o Plotting actual and fitted values against each regressor can often be helpful in 

seeing nonlinearities.  

 One way to explore nonlinearities (if you have a large enough sample) is to create a 

battery of dummy variables with different levels of a regressor. Looking at the pattern of 

coefficients for the different levels can tell you whether the relationship is approximately 

linear. 

o For example, we could examine math SAT score effects by looking at dummies 

for 500  SATM < 600, 600  SATM < 700, and SATM  701, leaving out the 

bottom category below 500.  

o This will give us four points on a general response function (with zero implicit 

for the omitted group, below 500).  
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o If  the four points seem to lie on a straight line, then the linear specification is 

probably fine. One may also see evidence of quadratic or cubic behavior and can 

use more than four categories if you have enough data and want to be more 

discriminating. 

Quadratic and higher-order polynomial models 

 One easy way of incorporating curvature into a model is to introduce quadratic terms. 

(For the moment, we will assume only one regressor is nonlinear, so we’ll ignore others.) 

o 2
0 1 2i i i iY X X u     

o Possible shapes for the relationship: 

 Upward sloping at an increasing rate (1 > 0, 2 > 0) 

 Upward sloping at a decreasing rate or downward sloping but flattening 

out (1 > 0, 2 < 0) 

 Note that this curve always turns downward (upward) after a peak 

(trough) at x = –1/22, so it is critical to evaluate which part(s) of 

the curve the sample lies in. (Are most/all of the x values of 

interest < or > –1/22?) 

 This non-monotonicity may be good or bad depending on theory. 

 If you want a universally monotonic but diminishing effect, using 

ln x may be a good alternative specification. 

 Downward sloping and getting steeper as x increases (1 < 0, 2 < 0) 

o Always include a graph of the response function so that your reader can 

understand the shape of the effect.  

 The coefficients don’t tell the story in a transparent way. 

o Partial effect 

 1 22
Y

X
X


   


. 

 The sign of the partial effect will change at x = –1/22 if sgn(1)  

sgn(2), as discussed above. 

o Estimating the standard error of the partial effect 

 Conditional on x, 

       2
1 2 1 2 1 2

ˆ ˆ ˆ ˆ ˆ ˆvar 2 var 4 var 4 cov , .X X X           

The estimated values of the variances and covariances can be obtained 

from the output of your regression package. (They are the diagonal and 

off-diagonal elements of the estimated covariance matrix of the 

coefficient vector. This is obtained by estat vce after a regression 

command. (As usual, it will be the classical estimated covariance 

estimator unless you use the robust option in the regression.) 
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 S&W point out two other ways of estimating the standard error of a 

linear combination of coefficients: 

 Do a test command that the partial effect is zero to get an F 

statistic, then an estimate of the standard error will be the 

absolute value of the partial effect at that x divided by the square 

root of the F value. 

 Transform the model into one where the desired effect is directly 

estimated and get the standard error from the regression table. 

o Relevant significance tests in the quadratic model: 

 Does x affect y? 

 This is a test of the joint null hypothesis 0 1 2: 0, 0.H      It is a 

standard F test. 

 Is the relationship quadratic rather than linear? 

 This is a t test of H0: 2 = 0, given that 1 is assumed to be 

nonzero (null hypothesis is linear model). 

 This is an example of a nested specification test because the 

linear model is a special case of (nested within) the quadratic 

specification. 

 Note that the t test is preferred to comparing R2 or 2R  values.  

o The former will always be higher for the quadratic 

specification. 

o The latter will be higher if the t value exceeds one, which 

is well below conventional critical values. 

 Higher-order polynomials 

o Do cubic, quartic, etc. relationships ever occur in economic data? 

 Yes, but they can be hard to sell. 

 Example of SAT scores and Reed GPA. 

o Same procedures apply for estimated partial effects and tests. 

 What to do if 3rd-order term is significant and 2nd-order term is not? 

 Don’t leave out the 2nd-order term. 

 Test both jointly to try to reject the linear model in favor of the 

cubic. If significant, retain both. 

Nonlinear least squares 

 For models that are nonlinear in the parameters, we must generally use nonlinear search 

methods to find the least-squares (or maximum-likelihood) estimates. 

o Linearity in parameters depends crucially on the specification of the error term. 

o The error term in the model must be additive. 

 Consider the model 1 2y e x  .  
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 If the appropriate error term specification is 1 2 ,ey e x e   then we 

can take logs and get 1 1ln ln ,y x e     which is linear in the 

parameters and can easily be estimated by linear OLS. 

 If the appropriate error term specification is 1 2y e x e   , then 

the model cannot be made linear in parameters with an additive 

error term and must be estimated nonlinearly. (I don’t know why 

this error specification would be better, but just suppose…) 

 Nonlinear estimation usually requires you to (at minimum) provide a formula for the 

deterministic part of the function. 

o To estimate the above model in Stata you could type 

nl (y = exp({b1}) * x^{b2}), initial (b1 5 b2 0) 

o Nonlinear search algorithms can be very slow and unreliable. It is generally very 

helpful to provide starting values near the optimal parameter values. 

 In this case, we might run the log-log regression (using the wrong error 

term specification) to get preliminary estimates of the coefficients, then 

insert those values in the “initial” option of the nl statement. 

 Nonlinear estimation is a directed search over the parameter space to find the best 

combination. It is generally guided by taking numerical derivatives of the objective (LS 

or likelihood) function with respect to the parameters, then following the direction of 

greatest improvement (the gradient). 

o Some nonlinear-optimization packages allow you to enter analytic (algebraic) 

partial derivatives of the model with respect to the parameters. This generally 

speeds up convergence. 

 Some objective functions may have multiple local optima. Starting far from the global 

optimum can cause the algorithm to become trapped at a global optimum that is inferior 

to the global one. Good initial values can help avoid this problem. 

o To assure that your optimum is a global one, try starting from several different 

sets of initial values and see if you converge to the same optimum. 

 Some objective functions are badly behaved, having ridges (or valleys) where the 

objective function is very flat in one direction. This is particularly true if multicollinearity 

is a problem. If two variables are highly, positively correlated, then increasing the 

coefficient of one by a lot and simultaneously decreasing the coefficient of the other will 

have very little effect on the predicted values and the residuals, hence on the objective 

function. This leads to a ridge in the likelihood function (valley in the least-squares 

function) at a diagonal in the space of these two variables. 

 Nonlinear estimation is not as computationally problematic as in the old days, but it is 

still subject to these numerical difficulties. 

o Avoid it when possible by using specifications that are linear in the parameters. 

o There will be times when we need to use it for maximum-likelihood estimators 

such as probit and logit, but these likelihood functions are often well-behaved. 


