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Section 4 Basics of  Multiple Regression 
Nearly all econometric applications require more than one explanatory variable. Thus, we 

need to extend the case of bivariate (simple) regression to multiple regression, involving 

multiple regressors. 

Omitted variable bias 

 What happens if we leave out a relevant regressor? 

 Suppose that the true model is 1 2 2 3 3 ,i iy x x e     so that the true effect of x2 on y is 

2. (Note that x1 is the constant 1 multiplied by 1, the intercept term.) Instead of fitting 

this model, we instead fit a simple regression model 1 2 2 .i iy x v      Will our estimate 

2̂  be a good (unbiased, at least) estimate of the true effect 2? No, in general it will be 

biased: 

o The error term in the estimated simple regression model will include the effect of 

x3 in addition to the true error e: 3 3i iv x e   

o Applying the simple-regression expected value formula from earlier, 
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Assuming the standard OLS assumptions are correct for the two-variable model, 

the e term in the numerator has expectation of zero. The cross-product term in 

the numerator has probability limit 3 cov(x2, x3). The denominator has plim of 

the variance of x2. Thus    
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      Note that the ratio in this 

expression is (the expectation of) the regression slope coefficient we would get by 

regressing x3 on x2. 

o Thus, the omission of x3 from the regression biases the OLS estimate of the 

coefficient on x2 unless one of two conditions is true: 

 x3 doesn’t really belong in the regression (3 = 0), or 

 x2 and x3 are uncorrelated (cov = 0). 

o This is known as omitted-variable bias.  

 The bias has the sign of the product of 3 and cov(x2, x3). 
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 Temperature/rainfall example on daily umbrella sales 

 Rainfall and temp are negatively correlated (cov < 0) 

 True effect of temp on umbrella sales is zero (2 = 0) 

 True effect of rainfall on umbrella sales is positive (3 > 0) 

 Bias in 2̂  will have sign of 3 cov < 0, so we would expect 

temperature to have a negative estimated coefficient, even though 

the true effect is zero. 

 Temperature is “proxying” for an omitted variable with which it 

is correlated. 

o Omitted-variable bias is a ubiquitous problem in econometrics because there are 

always potential explanatory variables that cannot be observed and included in 

the regression. It is extremely important to think about what variables are 

omitted, and how their effects are being picked up by the included variables. 

Multiple regression 

 1 2 ,2 3 ,3 ,i i i K i K iy x x x e      , for i = 1, 2, …, N. 

o 1 is the intercept term and can be thought of as the coefficient on xi,1  1. 

o j for j = 2, 3, …, K is the partial effect of xj on y. 

 We can extend our least-squares (or method-of-moments or maximum-likelihood) 

analysis of the bivariate case to multiple regression easily. We now require that the 

expectation of the error term conditional on each of the k regressors be zero, which 

implies that the expected value of the product of each regressor with the error is zero and 

that the overall expected value of the error term is zero. 

o The population sum-of-squares function is 
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       , where the b coefficients are the OLS 

estimators that minimize S. 

o To minimize S we take the partial derivatives of S with respect to each b and set 

to zero: 
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o These are the OLS normal equations for multiple regressions. They are a set of K 

linear equations that can be solved for the K coefficient estimates. 

o The solution, of course, is messy, but it can be described very compactly by the 

matrix notation that we developed for the bivariate case. 



~ 47 ~ 

 

 Because we invested in matrix notation for the bivariate model, there is very little that 

needs to be changed to extend the model from two variables to many. In matrix form: 

o y is an N  1 column vector as before: 
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o X is now an N  K matrix: 
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o  is now a K  1 column vector of coefficients 
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o And e is as before an N  1 vector of the error terms: 

1

2 .

N

e

e

e

 
 
 
 
 
 

e


 

o As in the bivariate case, we can write this system of N equations as .y = X + e  

o As in the bivariate case, the OLS coefficient estimator is   1
.

 b X X X y  

o As in the bivariate case, the predicted values of y  are ˆ y Xb and the residuals 

are ˆ ˆ   e y y y Xb . 

o Note that 
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So the XX and Xy matrices include all the first and second moment information 

for the sample: N, the sum of each variable, the sum of the squares of each 

variable, and the sums of the cross-products of each pair of variables. In 

particular, XX is often called the “moment matrix” of the regressors. 

 Estimating the error variance 

o As before, we calculate the standard error of the regression (estimate) (SEE, 

SER, or RMSE) 

o 2 2 2

1

1
ˆ ˆ .

N

i
i

s e
N K 

  
   (Note that HGL uses degrees of freedom correction here 

but not in simple regression.) 

o The degrees of freedom are now N – K because K degrees of freedom have been 

“used up” in the calculation of b. 

OLS assumptions in multiple regression 

 We need to add one assumption: that the regressors are not perfectly collinear 

o MR1: 1 2 ,2 , , 1, 2, , .i i K i K iy x x e i N        

o MR2:   0iE e  . 

o MR3:     2var vari iy e    (homoskedasticity) 

o MR4:  cov , 0, .i je e i j    (no autocorrelation) 

o MR5: The values of x are non-random and not perfectly collinear: No perfect 

multicollinearity 

 Intuitively, it means that within the sample, no variable can be expressed 

as an exact linear function of the other variables (including the constant 

1). Note that nonlinear functions are OK: we can include both age and 

age-squared, for example. But if we define a work experience variable as 

age – education – 6 (as is often done), then we can’t include age, 

education, and experience in the regression because experience is a linear 

function of age and education. 

 The most common violation of this is the “dummy variable trap” in 

which we include a dummy for male, a dummy for female, and a 

constant. If all observations in the sample are either male or female, then 
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the two dummies add up to 1, which equals the constant term. Thus, we 

have perfect multicollinearity and cannot perform the regression. 

 Perfect multicollinearity also results when one variable is equal to a 

constant (zero or one, if a dummy is turned on or off for every 

observation) 

 Mathematically, the assumption of no perfect multicollinearity means 

that the X matrix has full column rank (rank K), so that the XX matrix is 

non-singular and has an inverse. 

 What happens if regressors are nearly collinear? Then it becomes 

impossible for OLS to distinguish between the effects of nearly collinear 

regressors. 

 The XX matrix is nearly singular, which means that the diagonal 

elements of its inverse are very large (kind of like dividing by 

zero, note the simple-regression formula for the slope estimator 

requires variation in x). 

 The large diagonal elements of XX lead to large estimated 

standard errors of the coefficients, accurately reflecting the 

problem that OLS has in estimating the effects of individual 

variables. 

o MR6: (optional) 2~ (0, )ie N   

Distribution of OLS multiple-regression estimators 

 If the error term is classical (including homoskedasticity), then we showed before that the 

covariance matrix of the coefficient estimator is   12  X X . 

 The Gauss-Markov Theorem also tells us that OLS is BLUE in the multiple-regression 

case under the following classical conditions: 

o  | ,NE e X 0  

2( | ) ,NE   ee X I  

X has full column rank. 

o In the case of multiple regression, “best” means that the covariance matrix of any 

other estimator can be shown to be “larger” than the OLS estimator’s by a 

positive definite matrix. 

o If the error term is conditionally normally distributed, then the OLS estimator is 

also normally distributed (and the t statistics follow the t distribution with N – K 

degrees of freedom). 


