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Section 3 Inference in Simple Regression 
 

Having derived the probability distribution of the OLS coefficients under assumptions SR1–

SR5, we are now in a position to make inferential statements about the population 

parameters: hypothesis tests and confidence intervals. 

(Confidence) Interval estimators 

 What a confidence interval means: The confidence limits are random variables, the 

parameter is not. Under the assumptions we have made about the model, 95% of the 

time our (random) confidence interval will include the actual parameter value. 

o Confidence interval is a pair of random variables l and u such that 

 Pr 0.95l u       or another specified confidence level. 

 Under our assumptions, 
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o This is true always if SR6 (normality) is satisfied 

o It is true asymptotically if SR6 is not valid but the actual distribution of e has 

finite fourth moments 

 If we know 2 then we can convert b2 to a “standard normal” variable by subtracting its 

expected value and dividing by its standard deviation: 

o 
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o From properties of standard normal, we know that  Pr 1.96 1.96 0.95.Z     

o With a little algebra: 
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o This is the 95% interval estimate (usually called a confidence interval) for 2. 
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 We can’t use the formula above unless we know 2, which we normally don’t. 

o If we replace 2 by s2, then b2 follows a t distribution with N – 2 degrees of 

freedom rather than the normal distribution. 

o 
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o If tc is the 5% two-tailed critical value for this t distribution, then 

   2 2 2 2 2Pr . . . . 0.95c cb t s e b b t s e b           

 Explain how to find the critical value, both theoretically and in the tables. 

o Stata (and some other packages) prints out these confidence limits based on 

assumptions SR1–SR5. 

Hypothesis tests about single coefficients 

 The most common test in econometrics is the “t-test” of the hypothesis that a single 

coefficient equals zero.  

o This test is printed out for each regression coefficient in Stata and other statistical 

packages. 

o Depending on the assumptions of the model (and whether they are valid), the “t-

statistic” may or may not follow Student’s t distribution. 

 General form for calculating a t-statistic is 
 s.e.

k

k

b c
t

b


 , where c is the hypothetical value 

(usually zero) that we are testing against and s.e. is the standard error of the coefficient 

estimator bk. 

 This test statistic is useful because we know its distribution under the null hypothesis that 

k = c.  

o Thus we can determine how likely or unlikely it is that we would observe the 

current sample if the null hypothesis is true. 

o This allows us to control the Type I error at significance level . 

 Using the t-statistic to test H0: k = c against the two-sided alternative H1: k  c 

o Note that hypothesis to be tested is always expressed in terms of the actual 

coefficient, not the estimated one. 

o Use the formula above to calculate the t statistic. (Stata will print out b and its 

standard error, and also the t value corresponding to c = 0.) 

o If the absolute value of the calculated t value is greater than the critical value, 

then reject the null. 

 Do example including looking up critical value. 
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o Alternatively, we can compute the probability (p) value associated with the test: 

the probability that an outcome at least this inconsistent with the null hypothesis 

would occur if the null is indeed true. 

 
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, where the “act” refers to the actual 

observed/calculated value 

 If we know the distribution of the t statistic, then we can calculate the last 

probability from tables. 

 Under assumptions SR1–SR5, the t statistic will be 

asymptotically normal.  

 With SR6 it is t with N – 2 degrees of freedom in small samples. 

 Stata calculates the p value associated with the null hypothesis  

= 0 using the t distribution 

 Show diagram corresponding to HGL’s Figure 3.2 on page 103: For 

given |t|, show how to calculate p value. 

 On same diagram show critical values for test at given level of significance, 

and how to decide the result of the test 

 Note 1.96 as two-tailed 5% critical value for normal distribution. 

 Then show the symmetry: the p value is the smallest significance level at 

which the null hypothesis can be rejected. 

 One-tailed test such as H0: 2 = c, H1: 2 < c. (Or H0: 2  c) 

o Same basic procedure, but in this case we concentrate the entire rejection region 

in one tail of the distribution.  

 We reject the null if and only if Pr[t < tact] < critical value (ignoring right 

tail of distribution) and fail to reject for any positive t value no matter 

how large. 

 Other direction if H1 is 1 > c: Fail to reject null for any negative value of 

t and reject when Pr[t < tact] > critical value. 

 Present some examples of regressions and practice with tests of  = 0 and  = other 

values. 

o Good (multiple regression) example with lots of different significance levels: 

 reg gpoints irdr satv100 satm100 taking if freshman 

 Can do just taking to get almost significant example for simple regression 

Testing linear combinations of parameters 

 What if we want an interval estimator or hypothesis test for the value of y when x = 100? 
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 This would be an estimator for 1 + 1002. 

 The natural estimator is b1 + 100b2 

 What is the distribution of b1 + 100b2? 

o b1 + 100b2 is a linear function of b1 and b2, so it is normal (or t) if they are 

o      1 2 1 2 1 2100 100 100E b b E b E b        so it is unbiased (under 

assumptions) 

o        1 2 1 2 1 2var 100 var 10,000 var 200cov ,b b b b b b     

o We can approximate these variances and covariance by their sample estimators, 

and use the result to calculate a t statistic. 

 Can also do hypothesis test of such linear combinations of coefficients. 

Prediction in the simple regression model 

 One of the most common tasks for which we use econometrics is conditional prediction 

or forecasting.  

o We want to answer the question “What would y be if x were some value x0?” 

 This is exactly the same problem we discussed above in estimating the distribution of b1 

+ 100b2, which is the OLS prediction of y for x = 100. 

 OLS prediction: 0 1 2 0ŷ b b x   

o Because  E e  = 0, we “predict” it to be zero.  

 Might not do that if we had information about the error term 

corresponding to our prediction. 

o Note that we are assuming x0 to be given. 

 Secondary prediction problem occurs if we must also predict x. 

 Forecast error (prediction error) is 0 0ˆf y y  . 

o 
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o   0E f   because b is unbiased, so OLS predictor is unbiased 

o OLS predictor is BLUP based on BLUE OLS estimator 

 What is the variance of 0ŷ  or, equivalently, the variance of f ?  

o    1 1 2 2 0 0f b b x e        

o 
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o For simple regression under homoskedasticity, 
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o Prediction error is smaller for: 

 Smaller error variance 

 Larger sample size (through both second and third terms) 

 Greater sample variation in x 

 Observations closer (X) to the mean 

 With SR6 (normality) or asymptotically under more general assumptions, 

 
 ~ 0,1

var

f
N

f
, because f is a linear function of normal variables with mean 0. 
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 We usually don’t know , so we must replace it with s2. This makes the distribution tN – 2 

rather than normal. 

 Interval estimate for 0ŷ  is    0 0 0 0 0ˆ ˆ ˆ ˆPr . . . . 1c cy t s e y y y t s e y           , where tc is 

the /2 critical value of the tN – 2 distribution. 

Measuring goodness of fit 

 It is always of interest to measure how well our regression line fits the data. There are 

several that are commonly reported. 

 Sum of Squares due to Errors = SSE =  22
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o Warning about notation: some books use SSR for “sum of squared residuals” 

and SSE to mean “sum of squares explained.” 

 Fundamental regression identity: SST = SSR + SSE. Works due to the enforced 

independence of ŷ  and ê . See Appendix 4B. 

 Standard error of the estimate (regression): This is our estimate of the standard 

deviation of the error term. 
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o Standard error of regression is often (as in Stata) called root mean squared error or 

RMSE. 

 Coefficient of determination: R2 

o The R2 coefficient measures the fraction of the variance in the dependent variable 

that is explained by the covariation with the regressor. It has a range of (0, 1), 

with R2 = 0 meaning no relationship and R2 = 1 meaning a perfect linear fit. 
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o R2 is approximately the square of the sample correlation coefficient between y 

and ŷ . 

Specification issues 

 Scaling 

o Does it matter how we scale the x and y variables? 
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 Shies away from axes 

 Monotonic with diminishing returns 

 Log of regressor only (“linear-log” model) 

o 1 2 ln .i i iy x e    

o Change of 1% in x changes ln x by about 0.01 and thus leads to about a 0.012 

unit absolute change in y. 

 If x increases by z%, this means it is 1 + z/100 times as large, which 

means that its log is lnx0 + ln(1 + z/100). If z is small (say, less that 20%) 

then the approximation is reasonable close. However, you may want to 

do exact calculations for formal work. 

o Partial effect in levels is 2

1y
x x


 


, which is monotonically increasing or 

decreasing (depending on sign of 1) but slope goes to zero as x gets large. 

 Log of dependent variable only (“log-linear” model) 

o 1 2ln i i iy x e    

 Note that 1 2 ,i ix e
iy e    so this is clearly a different error term than when 

y is not in log terms. 

o Change of z units in x changes ln y by 2z units, so it changes y by about 1002z 

percent. 

 The same approximation issues applies here. The increase of 1x units in 

ln y means that y increases by a factor of 2 ze , which is approximately 

1 + 1z for small values of z. For larger values of z and for more formal 

work, it is best to calculate the exponential directly. 

o Partial effect in levels is 2 2

ln ln
/ .

ln

y y y y
y

x x y y
   

    
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 Alternatively, 1 2
2 2 .x ey
e y

x
  

   


 

 Partial effect is increasing in absolute value as y increases. (Note that y 

must always be positive in this model.) 

 Log of both regressor and dependent variable (“log-log model”) 

o 1 2ln ln .i i iy x e    

 Also implies that 1 2 1 2 2ln
0 ,i i ix e e

i i i iy e e x e x v         where 

1
0 , .ie

ie v e    

 The Cobb-Douglas function takes this form (with a multiplicative error v, 

usually assumed to be log-normally distributed). 

o Change of 1% in x changes ln x by about 0.01, which changes ln y by about 

0.012, which changes y by about 2%. (Both of the approximation caveats above 

apply here.) 
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 Thus, 2 is the point elasticity of y with respect to x. 

 This makes log-log a popular function form. 

o Partial effect in levels is 2

ln ln
.

ln ln

y y y x y
y y x x x
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  
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 Alternatively, 1 2 ln
2 2
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.x ey x y

e
x x x

   
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 
 

 Partial effect is constant in elasticity terms, but varies with y and x in level 

terms. 

 Which log model to choose? Theory vs. let data decide? 

o Theory may suggest that percentage changes are more important than absolute 

changes for one or both variables. 

 Income is often logged if we think that a doubling of income from 

$50,000 to $100,000 would be associated with the same change in other 

variables as a doubling from $100,000 to $200,000 (rather than half as 

much). 

 As suggested by the previous example, logging a variable scales down 

extreme values. If most of the sample variation is between $20,000 and 

$100,000 (with mean $50,000 and standard deviation $30,000), but you 

have a few values of $500,000 for income, these are going to be 15 

standard deviations above the mean in level terms but much less in log 

terms. 

 The log of 500,000 is only ln(10)=2.3 units larger than the log of 

50,000. The standard deviation of the log would probably be in 

the range of 0.6 or so, so the highly deviant observations would 

be less than 4 standard deviations above the mean instead of 15. 

 Since we often want our variables to be normally distributed, we might 

try to decide whether the variable is more likely to be normally or log-

normally distributed. 
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o We can predict lny by   1 2 1 2ln .y b b x E e b b x      But 

    ln ln ln .y E y yE y E e e e    

o The problem is that even if E(ei) = 0, E(ee)  1.  

o If e is normally distributed with variance 2, then  
2

2 .ieE e e


  

 In that case, we can predict y by 


2
ˆ

ln2ˆ
es

y
cy e e . This is a consistent 

prediction if the error term is normal. 

o In the non-normal case, we can use a simple regression to calculate the 

appropriate adjustment factor: 

 Run a regression of 
ln ,iy

iy e   which is a bivariate regression without a 

constant term. 

 Then adjust the predictions to get 
lnˆˆ ,y

cy e   which, for the sample 

observations, are just the predicted values from the auxiliary regression. 

 Can’t do a convenient interval predictor because ˆcy  is not normal or t 

distributed. 

Using residuals 

 All regression software will have a way to scatter-plot the actual and fitted values or the 

residuals against another variable (x is often most useful).  

o Don’t put residual plot and actual/fitted plot on same diagram because of 

scaling. 

 Residuals tell you what you are missing in your regression: 

o Functional form: if there is obvious curvature in the actual vs. fitted values, you 

may need a nonlinear form 

o Heteroskedasticity: if the variance of the residuals seems to be related to x or 

another variable, then you may need to correct for it. 

 How would you tell this from residual plot? 

o Outliers: Are there specific observations that are far from the normal pattern? 

 If so, they may indicate that one or more observations do not follow the 

same model (Assumption 0). 

 Or they may suggest an additional explanatory variable that affected y in 

those observations. 

 Are residuals normally distributed? 

o If error term is normal, then residuals should be. 

o Jarque-Bera test 
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 
  
 
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 Tests whether skewness and kurtosis of variable match the zero, three 

expected in normal distribution. 

o There are other tests as well. 


