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Section 11 Simultaneous Equations 
The most crucial of our OLS assumptions (which carry over to most of the other estimators 

that we have studied) is that the regressors be exogenous—uncorrelated with the error term. 

This assumption is violated if we have “reverse causality” in which e ↑  y ↑  x ↑↓.  

System estimation vs. single-equation 

 The first essential question to ask in a situation where the regressor may be endogenous 

is “What is the model that determines the endogenous regressor?” 

o This question, which must be answered at least partially to use any of the 

techniques in this section, suggests that our single econometric equation should 

be thought of as part of a system of simultaneous equations that jointly determine 

both our y and our endogenous x variables. 

o For example, one of the most common applications in economics is attempting 

to estimate a demand curve: quantity is a function of price.  

 However, shocks to demand (e) affect price, so price cannot generally be 

taken as exogenous. 

 The demand curve is part of a system of simultaneous equations along 

with the supply curve that jointly determine quantity and price. 

o Thinking of the joint determination of y and (at least some) x focuses our 

attention on a crucial set of variables: the exogenous variables that are in the 

“other” equation that determines x but that are not in the equation as separate 

determinants of y. 

 Whether we end up modeling the second equation explicitly or not, these 

variables are crucial to identifying the effects of x on y. 

 The two main approaches to endogeneity revolve around our degree of interest in the 

determination of the endogenous regressors: 

o System estimation involves estimating a full set of equations with two or more 

dependent variables that are on the left-hand side of one equation and the right-

hand side of others. (Example: both the supply and demand equations.) 

o Single-equation estimation involves estimating only the one equation of interest, 

but we still need to consider the variables that are in the other equation(s). 

(Example: estimate only the demand equation, but the exogenous variables in the 

supply equation are used as instruments.) 

Simultaneous equations and the identification problem 

 In the simple case above, we had one endogenous variable on the right-hand side and 

one exogenous variable available to act as an instrument. 
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o In the more general case, there may be multiple endogenous variables and 

multiple instruments. 

o This forces us to think about the problem of whether there is sufficient exogenous 

variation to identify the coefficients we want to estimate: the identification 

problem. 

 We will examine an extended example of a set of supply and demand curves to explore 

the identification problem. 

o Model I: 

Demand curve: 0 PQ P u     

Supply curve: 0 PQ P v    

 Solving for the reduced form: 
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are called the reduced-form equations. We have solved the system of 

simultaneous linear equations for separate linear equations each of which 

has an endogenous variable on the left and none on the right. 

 The  coefficients are the reduced-form coefficients: they are nonlinear 

combinations of the structural coefficients  and . 

 We can estimate the reduced-form coefficients by OLS because there are 

no endogenous variables on the right-hand side. 

 In this case, there are no variables at all on the RHS! We can estimate P,0 

and Q,0 as the means of P and Q. 

 Does this give us enough information to identify the  and  

parameters? 

 No. There are four structural coefficients (two  and two ) and 

only two reduced-form coefficients (). There is no way to 
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construct a unique estimator of and of the  or  coefficients from 

the estimate of . 

 Thus, in Model I neither of the equations is identified. 

 Show graph: all variation in P and Q are due to unobserved error terms. 

o Model II: 

Demand curve: 0 P MQ P M u    , where M is income and is exogenous 

Supply curve: 0 PQ P v    

 Solving for the reduced form: 
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 Suppose we estimate the four reduced-form coefficients P0, PM, Q0, QM 

by OLS. Can we identify the five structural coefficients? 

 Obviously not: can’t identify five coefficients uniquely from four. 

 However, we can identify some of them: 
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o This is called indirect least squares and is an antiquated 

method for estimating these models. 

 The presence of the income term in the demand equation identifies 

the slope and intercept of the supply equation. Changes in 

income affect demand but not supply, so we can use these 

changes to trace out the slope of the supply curve. How much 

does an increase income affect P and how much does it affect Q? 

o The supply equation is just identified because there is 

only one way of extracting the structural parameters from 

the reduced-form parameters.  

o 2SLS of the supply equation using income as an 

instrument gives us the same estimator as ILS in the just-

identified case. 
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 The demand equation is not identified: the only variation in the 

supply curve is the unobserved random shock. 

 What would happen if income also affected supply? 

o Model III: 

Demand curve: 0 P MQ P M u     

Supply curve: 0 P MQ P M v     

 Solving for the reduced form: 
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 It’s no longer possible to identify either equation. None of the six 

structural coefficients can be identified from estimates of the four 

reduced-form coefficients. 

 We can no longer use changes in M to trace out either curve because it 

affects both curves. 

 Note that nothing in the data has changed: we have merely changed our 

assumption (lens analogy) about how the data were generated.  

 If the assumption in Model II that income does not affect supply 

is incorrect, our estimates of the supply curve would be nonsense. 

o Model IV: 

Demand curve: 0 P MQ P M u     

Supply curve: 0 P RQ P R v    , where R is rainfall (exogenous) 

 Solving for the reduced form: 
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 There are now six estimable coefficients and six structural coefficients we 

would like to estimate. Just identification of all coefficients is possible 

based on the numbers. 

 In fact, as before, 
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 Now, we can do the same thing with the rainfall coefficients: 
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 Both equations are just identified:  

 Rainfall identifies the demand equation because it is exogenous, 

affects the endogenous variable price, and is not in the demand 

equation on its own. 

 Income identifies the supply equation because it is exogenous, 

affects the endogenous variable price, and is not in the supply 

equation on its own. 

 Again, 2SLS gives us the same estimators as ILS in the just-identified 

case: 

 ivregress 2sls q m (p = r) to estimate the demand equation 

 ivregress 2sls q r (p = m) to estimate the supply equation 

o Model V: 

 Demand curve: 0 P MQ P M u     

Supply curve: 0 P R WQ P R W v     , where W is wages (exogenous) 

 We now have two exogenous variables in the supply equation that are not 

in the demand equation. Two alternative ways of identifying the demand 

curve. 
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 Solving for the reduced form: 
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 There are now eight estimable reduced-form coefficients and seven 

structural coefficients. 

 All six of the equations that we used in Model IV to get the those six 

coefficients still work. 

 Now we can estimate P either as QR
P

PR


 


 or as .QW

P
PW


 


 

 The demand equation is now overidentified because there are 

two exogenous variables that affect the single endogenous 

variable P that are not separately in the demand equation. 

 Will they be the same? Will QR QW

PR PW

 


 
? 

 Generally they won’t be identical even if the model is correct 

because of sampling error. Is there more inequality than would be 

expected randomly? 

 We can test this nonlinear null hypothesis.  

o If the model is valid, we should not be able to reject this 

null hypothesis.  

o Rejecting these overidentifying restrictions suggests that 

the model is not valid. 

 There are two different ILS estimates for the coefficients of the demand 

equation. 2SLS will be a combination of them. 

 Estimate demand equation by ivregress 2sls q m (p = r w) 

 The instrument used is the prediction of Q based on R and W. 

 Note several properties of identification 

o Identification is usually by equation/coefficient, not necessarily of the whole 

system. 

 It’s possible to have one equation that is identified with others not. 
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 If there are multiple endogenous regressors it is possible to have one 

identified and others not. 

o Identification depends crucially on three assumptions: 

 That the instrument is exogenous 

 That the instrument does not itself appear in the equation 

 That the instrument does appear in another equation that influences the 

endogenous regressor 

 If any of these assumptions is violated, then the 2SLS estimator is biased 

and inconsistent. 

o In general, there needs to be one omitted exogenous variable for each included 

endogenous variable. (Order condition for identification) 

 However, if you have two instruments that are correlated with one 

endogenous variable but neither is correlated with the other, then 

identification of the second endogenous regressor fails. 

 Order is not enough; the rank condition applies as well. 

 Matrix notation of the 2SLS estimator 

o Consider our 2-equation system of Model V. 

 Let y = [Q  P] be an N  2 matrix of the two endogenous variables. 

 Let Z = [1 M  R  W ] be an N  4 matrix of the four exogenous variables 

(which are instruments for one equation and included exogenous 

variables for the other). 

 Let e = [u  v ] be an N  2 matrix of error terms, which are probably 

correlated within a single observation. 

 Let  be the 2  2 matrix of coefficients applied to the endogenous 

variables (which will often be 1 or –1 by normalization) 

 Let B be the 4  2 matrix of coefficients applied to the exogenous 

variables, which must have some elements that are known to be zero in 

order for identification to be achieved. 

 The two equations of the model can be written as ,Y Z e     where  
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 The reduced-form equations are obtained by post-multiplying the 

equation by the inverse of  (which must exist for the model to be 
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solvable): 1 1 1,Y Z e        or 1 1 ,Y Z e Z           where 

1    and 
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 If the system is identified, then there are enough restrictions on the  and 

B matrices (five in the model above—two –1s and three 0s) to assure that 

the remaining elements can be obtained uniquely from the  matrix. 

Estimation of systems of equations (not in text) 

 The method of instrumental variables offers us a means to estimate a single equation 

from a larger system of simultaneous equations. Sometimes we want or need to estimate 

the entire system. 

o Estimates are generally more efficient if all equations are estimated together. 

 Taking account of the correlation between the error terms is beneficial 

 Suppose that we know that the error terms are positively correlated and 

that equation 2 seems to have a large positive error for observation i 

 Joint estimation allows us to take account of the likely positive error in 

equation 1 and not attempt to fit the outlying observation too closely 

 Adds information and thus improves efficiency 

o We may want to impose and/or test coefficient restrictions across the equations 

of a system. 

 Demand equations derived from a common utility function (or factor 

demands from a common cost function) have cross-equation “symmetry” 

restrictions. (The Slutsky condition for demand says that the income-

compensated cross-price elasticity of demand for x with respect to the 

price of y equals the elasticity of demand for y with respect to the price of 

x.) 

 Might want to test whether the income elasticity of demand for apples 

exceeds that of bananas. 

 Might want to test whether all of the coefficients of the demand for 

apples are the same as those of bananas so that we can aggregate them 

together 

 Two kinds of joint-system estimation 

o Seemingly unrelated regressions (SUR) (also called Zellner-efficient regression) 

 System of equations with no endogenous variables on right-hand side 

 Efficiency gains from taking account of correlation of error 

 Possibility of testing/imposing cross-equation coefficient restrictions 

o Three-state least squares (3SLS) 
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 System of equations with endogenous regressors 

 Example would be estimating both demand and supply equations 

together 

 Adds efficiency gains (or cross-equation tests) to 2SLS/IV consistent 

estimator of equation(s) with endogenous regressors 

 Estimation by seemingly unrelated regressions 

o Here we have a set of equations that have no endogenous regressors, but we want 

to estimate the equations jointly. 

o We can do this by “stacking” the regressions: 

 Suppose that there are 3 equations to be jointly estimated with dependent 

variables y1, y2, and y3, sets of regressors (which might overlap) X1, X2, 

and X3, and error terms e1, e2, and e3.  

 Separately, the equations can be written 
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 We can then write the combined system of equations as . y X e  

o Can we estimate this system by OLS?  

 Yes, except this not efficient because of probably correlation between the 

ith observation’s error term across equations. 

o Specification of error term 

 If observations are IID, then, cov(emi, elj) = 0 if i  j. (First subscript is 

equation; second is the observation.) 

 However, it is likely that within each observation, cov(emi, eli ) = ml  0. 



~ 111 ~ 

 

 Heteroskedasticity is also almost certain since we have different 

dependent variables for each third of the stacked regression. 

 Let 
11 12 13

12 22 23

13 23 33

u

   
     
    

  

 Assume that there is no correlation across observations either within any 

of the equations or between them. 

 Then the covariance matrix of the stacked error term is the 3n  3n 

matrix 
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o Given the non-scalar covariance matrix, this is another potential application of 

generalized least square:   11 1ˆ .GLS

   X X X y    

 (This general formula specializes to weighted least-squares when there is 

heteroskedasticity but no autocorrelation. We will also see a GLS 

application for serial correlation of the error.) 

o Of course, we don’t know ml, so we must estimate it.  

 We can do so based on OLS residuals because OLS is consistent (if not 

efficient). 

o SUR is a two-step procedure 

 First estimate the three regressions by OLS and calculate the residual 

vectors 1 2 3ˆ ˆ ˆ, , and .u u u  

 Next estimate 
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    m = 1, 2, 3; l = 1, 2, 3, and assemble 

these estimators into 
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 Finally, use “feasible” GLS to estimate  as   1
1 1ˆ ˆ ˆ .FGLS X X X Y

       

o This procedure can be iterated: 

 Because ˆ
FGLS  is a more efficient estimator than the OLS estimator, we 

should get “better” residuals be calculating them based on ˆ
FGLS  rather 

than on OLS. 

 Iterated seemingly unrelated regressions (ISUR) repeatedly re-estimates 

ml based on the FGLS coefficient estimator, then recalculates ̂  and re-

estimates  by FGLS. 

 This can be repeated over and over until the elements of ̂  do not change 

from iteration to iteration. 
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o SUR is more efficient than separate OLS except in two situations (in which they 

are identical): 

 First, there is no correlation between error terms across equations. In 

other words, ml  = 0 for all m  l. 

 Second, the same regressors appear in all equations: Xm = Xl for all m, l. 

o In Stata, we use sureg (dvar1 indvars1) (dvar2 indvars2) (dvar3 indvars3)  

 The option isure iterates to convergence. 

 The option constraints ([dvar1]indvar1j = [dvar2]indvar2j) imposes the 

constraint that the indvar1j coefficient in the equation for dvar1 equals 

the indvar2j coefficient in the equation for dvar2. 

 If constraints are complex, can also use 

constraint 1 [dvar1]indvar1j = [dvar2]indvar2j 

constraint 2 [dvar2]indvar2j = [dvar3]indvar3j 

sureg (dvar1 indvars1) (dvar2 indvars2) (dvar3 indvars3), constraint(1 2) 

 Estimation by three-stage least squares 

o If endogenous variables appear on the RHS of equations, then we must combine 

the system estimation of SUR with the instrumental variables method of 2SLS. 

o The resulting estimator is 3SLS: 

 Estimate the reduced-form equations by OLS. 

 Don’t need SUR because all exogenous variables in the system 

appear in each equation, so the Xm matrices are identical and 

OLS is equivalent to SUR. 

 Calculate fitted values of the endogenous variables based in the 

reduced-form regressions on the exogenous variables as in 2SLS. 

 Estimate the individual equations by 2SLS, using their fitted values in 

place of the endogenous regressors. 

 Calculate the residuals of each equation from the 2SLS 

regressions.  

 Calculate estimates of ml and assemble them into ̂. 

 Estimate the system of equations jointly by FGSL using the estimated ̂. 

 As with SUR, this can be iterated. 

o 3SLS has the same advantages relative to 2SLS that SUR has relative to OLS: 

 Efficiency gain by taking account of cross-equation correlation of error (if 

it exists) 

 Possibility of imposing or testing cross-equation coefficient restrictions 

o Stata will do 3SLS using the reg3 command, which combines the forms of the 

ivregress (with endregrs = instvars in the variable list of each regression) and 

multiple equations enclosed in parentheses. 

 Maximum-likelihood estimators for simultaneous equations 

o Unlike OLS, 2SLS is not an MLE, nor is 3SLS. 
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o There are MLEs that apply to these models under (usually) the normal 

distribution. 

o Limited-information maximum likelihood is a single-equation MLE that is 

analogous to 2SLS. 

o Full-information maximum likelihood is the multiple-equation MLE analog of 

3SLS. 

o Stata will do LIML (and GMM) by changing the 2SLS option in the ivregress 

command to liml or gmm. 

 Each of these has different options that will need to be set. 

o I can’t find any FIML procedure in Stata, but it may be possible to program it in 

the general-purpose ml command. 


