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Section 10 Regression with Stochastic Regressors 

Meaning of random regressors 

 Until now, we have assumed (against all reason) that the values of x have been 

controlled by the experimenter. 

 Economists almost never actually control the regressors 

 We should usually think of them as random variables that are determined jointly 

with y and e 

 With a small adaptation of our assumptions, OLS still has the desirable properties it 

had before 

OLS assumptions with random regressors 

With fixed x With random x 
SR1: 1 2y x e     with x fixed A10.1: 1 2y x e    with x, y, e random 

SR2:   0E e   A10.2: (x, y) obtained from IID sampling 

SR3:   2var e    A10.3:  | 0E e x   

SR4:  cov , 0i je e   A10.4: x takes on at least two values 

SR5: x takes on at least two values A10.5:   2var |e x    

SR6: e is normal A10.6: e is normal 
 

 Note that A10.2 implies SR4 (and A10.5?) 

 Note that A10.3 implies both  cov , 0x e   and   0E e   

o This assumption is a critical one. 

o Instead of assuming that x is a fixed value and e is random, we make the 

properties of e conditional on the particular outcome of x 

o This allows us to operate in very much the same way as if x is fixed, as long as 

A10.3 holds. 

o In the next section of the course, we will discuss how to deal with violations of 

A10.3. 

OLS properties 

 Small-sample properties 

o If A10.1–A10.6 hold, then 

 OLS is unbiased 

 OLS is BLUE 

 OLS standard errors are unbiased 
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 OLS coefficient estimators (conditional on x) are normal 

 Asymptotic properties 

o We can replace A10.3 by the weaker A10.3*: 

    0, cov , 0.E e x e   

 OLS is biased in small samples if A10.3* is true but A10.3 is not 

o Under A10.1–A10.5, replacing with A10.3*: 

 OLS coefficient estimators are consistent 

 OLS coefficient estimators are asymptotically normal 

If x is correlated with e 
 If A10.3* is violated, then OLS is biased and inconsistent 

o Coefficient on x will pick up the effects of the parts of e that are correlated with it 

in addition to the direct effects of x 

o Direction of bias depends on sign of correlation between x and e 

 Measurement error (discussed above under internal validity) 

o Suppose that the dependent variable is measured accurately but that we measure 

x with error: .i i ix x    

o The estimated model is  1 2 2i i i iy x e     . 

o Because  is part of x  and therefore correlated with it, the composite error term 

is now correlated with the actual regressor, meaning that b2 is biased and 

inconsistent.  

 If e and  are independent and normal, then 
2
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 The estimator is biased toward zero. 

 If most of the variation in x  comes from x, then the bias will be small. 

 As the variance of the measurement error grows in relation to the 

variation in the true variable, the magnitude of the bias increases. 

 As a worst-case limit, if the true x doesn’t vary across our sample of 

observations and all of the variation in our measure x  is random noise, 

then the expected value of our coefficient is zero. 

o Best solution is getting a better measure. 

o Alternatives are instrumental variables or direct measurement of degree of 

measurement error.  

 For example, if an alternative, precise measure is available for some 

arguably random sub-sample of observations, then we can calculate the 

variance of the true variable and the variance of the measurement error 

and correct the estimate. 

 Omitted-variables bias 
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o We derived this result at the beginning of the multiple regression analysis 

o Omitted variable is included in error. If omitted variable is correlated with 

included variable, then OLS estimator of coefficient on included variable is 

biased and inconsistent. 

 Simultaneous-equations bias (simultaneity bias) 

o Suppose that y and x are part of a larger theoretical system of equations: 

1 2

1 2

y x e

x y u

    
    

 

o The two variables are “jointly determined” and both are endogenous. 

 There is “feedback” from y to x, or “reverse causality” (actually, 

bidirectional) 

o e y x  , so e and x are correlated 

o Supply and demand curves are difficult to estimate because both q and p are 

endogenous 

Instrumental variables 

 Recall the method of moments analysis by which we derived the OLS estimators 

o We used the assumed population moment conditions 

   0, cov , 0E e x e   to derive the OLS normal equations as sample moment 

conditions: 2

1 1

1 1
ˆ ˆ0, 0

N N

i i i
i i

e x e
N N 

    

o If  cov , 0x e  , then the population moment conditions are invalid and we will 

get biased and inconsistent estimators from the OLS sample moment conditions. 

 The instrumental-variables estimator can be derived from the method of moments. 

 As usual, suppose that 1 2 ,y x e    but suppose that  cov , 0.x e   

 Let z be a variable with the following properties: 

o z does not have a direct effect on y. It does not belong in the equation alongside 

x. (z affects y only through x, not independently.) 

o z is exogenous. It is not correlated with e. 

o z is strongly correlated with x, the endogenous regressor. 

 This makes z a valid instrumental variable. 

 We can exploit  cov , 0z e   as our second moment condition in place of  cov , 0x e  , 

which is not true for this model. 

 The sample moment conditions are 

 

 

1 2
1 1

1 2
1 1

ˆ ˆˆ 0

ˆ ˆˆ 0.

N N

i i i
i i

N N

i i i i i
i i

e y x

e z z y x

 

 

   

   

 

 
 



~ 98 ~ 

 

 Solving the normal equations yields 
  

  
1
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ˆ .

N
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i

z z y y
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 Compare this to the standard OLS slope estimator 
  

  
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 In matrix terms,   1ˆ  Z X Z y   vs.   1 b X X X y  

 Properties of IV estimator: 

o Consistent as long as z is exogenous 

o Asymptotically normal 

o 

 
  

2

2 2
22
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ˆ ~ , , corr ,xzN
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N r x z
r x x



 
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o As usual, we estimate 2 by 
 2

1 2
2 1

ˆ ˆ

2

N

i i
i

IV
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 Weak instruments: If rxz is near zero, then the variance of 2̂  is large and the IV 

estimator is unreliable. 

Two-stage least squares 

 What if we have multiple strong instruments and/or multiple endogenous regressors in a 

multiple regression? 

 With more instruments than endogenous regressors, we have an “overidentified” system 

with alternative choices of instruments. 

o Suppose that xK  is endogenous but the first K – 1 regressors are exogenous 

o Suppose that z1 through zL are L valid instruments 

o Any linear combination of the instruments is admissible 

o Let’s choose the one that is more correlated with xK 

 To get that, we regress 1 2 2 1 1 1 1... ...K K K L L Kx x x z z v              

and use the fitted values ˆKx  as the instrument for xK 

 This amounts to doing two separate regressions, the first-stage regression of xK on the 

exogenous x variables and the instruments z, then a second-stage regression of 

1 2 2 1 1 ˆ... *K K K Ky x x x e        

 The estimators of  from the second-stage regression are called 2SLS estimators. 
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 But it’s not exactly like doing two separate regressions because our estimator of the error 

variance uses the actual values of xK rather than the fitted values: 

 2

1 2 ,2 ,
2 1

ˆ ˆ ˆ...
ˆ

N

i i K i K
i

IV

y x x

N K


    
 




 

o (If you do the second regression manually substituting in the fitted values, Stata 

will use the fitted values to calculate the residuals rather than the actual.) 

 2SLS easily extends to multiple endogenous regressors, as long as there are more 

independent instruments than endogenous regressors. 

o Suppose there are G “good” exogenous regressors, B = K – G  “bad” endogenous 

regressors, and L “lucky” instrumental variables. 

o L > B means overidentified, L = B is just identified, L < B means underidentified 

(and can’t be estimated by IV) 

o 1 2 2 1 1... ...G G G G K Ky x x x x e           

o First-stage regressions: 

1 2 2 1 1... ... , 1,...,G j j j Gj G j Lj L jx x x z z v j B                

o Get fitted values: 

 1 2 2 1 1
ˆ ˆˆ ˆ ˆˆ ... ... , 1,...,G j j j Gj G j Lj Lx x x z z j B               

o Regress original equation replacing endogenous regressors with fitted values 

1 2 2 1 1ˆ ˆ... ... *G G G G K Ky x x x x e           

 To implement 2SLS in Stata, use ivregress 2sls depvar exvars (endvars = instvars) , 

options 

Overidentification and generalized method of moments 

 If we have additional instruments beyond the minimum (i.e., an overidentified system), 

then we have more information than we need to estimate the model. 

 Suppose that z1 and z2 are both valid instruments for endogenous x 

 All three moment conditions: 

 

 
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1
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are theoretically true. 

 This opens the door for two possibilities: 

o We can determine the degree to which we cannot satisfy all three of these 

conditions simultaneously and use that as evidence of whether the model’s 
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assumptions are valid. (If the model is perfect, then all three should be zero 

except for sampling error.) 

 These are specification tests discussed below 

o We can think about alternative estimators (called GMM estimators) that would 

minimize a weighted average of the squares of the m moments. 

o 2SLS is a GMM estimator with a particular weighting of the moment conditions. 

Instrument strength 

 A strong instrument must provide correlation with part of the endogenous regressor that 

is not explained by the other (exogenous) regressors. 

 Regression of 1 2 2 1 1 1 1...K K K Kx x x z v            allows us to test 1 = 0 with a 

standard F = t2 test. 

o However, conventional wisdom says that the instrument is weak unless F > 10 

rather than the standard critical values for testing this hypothesis. 

o This test can be applied with multiple instruments and one endogenous regressor, 

with 10 still being the traditional threshold for weak instruments. 

o (See HGL’s Appendix 10E for a really confusing exposition of the general test 

with multiple endogenous regressors) 

Specification tests 

 If the model is overidentified, then we can do two kinds of tests: 

o A Hausman test of whether the x variables that we are treating as endogenous 

truly are endogenous 

o A test of the overidentifying restrictions, which can be interpreted as a test of 

instrument validity 

 Hausman test 

o    0 1: cov , 0, : cov , 0H x e H x e   

o Under null hypothesis, OLS is consistent and efficient, IV is consistent but 

inefficient. Since both are consistent, ˆ 0q b    in large samples 

o Under alternative hypothesis, OLS is inconsistent but IV is consistent, so 
ˆ 0q b c     in large samples. 

o Stata command hausman implements the procedure 

o HGL gives alternative implementation adding residuals from first-stage 

regression to OLS of original equation and testing whether they are significant 

 Tests for instrument validity 

o Is z correlated with e? 
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 Can’t do direct test because we can’t get consistent estimators for e 

without valid instruments, and we can’t know whether instruments are 

valid without consistent estimator of e. 

 With extra instruments (overidentified model), we can use some to test 

the others. 

o LM test: Do 2SLS/IV, get residuals, regress ê  on all z instruments and 

exogenous regressors, under null hypothesis that all instruments are valid, NR2 

from this regression ~ 2 with L – B degrees of freedom. 

o The J statistic is another common test of overidentifying restrictions: 

 As above, regress the 2SLS/IV residuals on the exogenous variables in 

the equation and all the instruments. 

 Compute the F statistic for the null hypothesis that the coefficients on the 

instruments are zero. 

 The test statistic LF (where L is the number of instruments) is 

asymptotically distributed as a 2 with L – B degrees of freedom (number 

of instruments – number of endogenous regressors = number of 

overidentifying restrictions to be tested). 

 Why does the J test or the LM test work? 

 If the instruments are exogenous, then they should not be 

correlated with y except through their effects on x.  

 The 2SLS residuals are the part of y that is orthogonal to the part 

of z that works through x.  

 If that is the only correlation that z has with y (there is no direct 

effect either direction), then the residuals should be uncorrelated 

with z, conditional on the other x variables, the included 

exogenous variables. 

o Rejection of the null hypothesis tells us that at least one of the overidentifying 

restrictions does not hold, which may mean that one or more of the instruments 

is invalid. 


