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Section 10 Regression with Stochastic Regressors 

Meaning of random regressors 

 Until now, we have assumed (against all reason) that the values of x have been 

controlled by the experimenter. 

 Economists almost never actually control the regressors 

 We should usually think of them as random variables that are determined jointly 

with y and e 

 With a small adaptation of our assumptions, OLS still has the desirable properties it 

had before 

OLS assumptions with random regressors 

With fixed x With random x 
SR1: 1 2y x e     with x fixed A10.1: 1 2y x e    with x, y, e random 

SR2:   0E e   A10.2: (x, y) obtained from IID sampling 

SR3:   2var e    A10.3:  | 0E e x   

SR4:  cov , 0i je e   A10.4: x takes on at least two values 

SR5: x takes on at least two values A10.5:   2var |e x    

SR6: e is normal A10.6: e is normal 
 

 Note that A10.2 implies SR4 (and A10.5?) 

 Note that A10.3 implies both  cov , 0x e   and   0E e   

o This assumption is a critical one. 

o Instead of assuming that x is a fixed value and e is random, we make the 

properties of e conditional on the particular outcome of x 

o This allows us to operate in very much the same way as if x is fixed, as long as 

A10.3 holds. 

o In the next section of the course, we will discuss how to deal with violations of 

A10.3. 

OLS properties 

 Small-sample properties 

o If A10.1–A10.6 hold, then 

 OLS is unbiased 

 OLS is BLUE 

 OLS standard errors are unbiased 
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 OLS coefficient estimators (conditional on x) are normal 

 Asymptotic properties 

o We can replace A10.3 by the weaker A10.3*: 

    0, cov , 0.E e x e   

 OLS is biased in small samples if A10.3* is true but A10.3 is not 

o Under A10.1–A10.5, replacing with A10.3*: 

 OLS coefficient estimators are consistent 

 OLS coefficient estimators are asymptotically normal 

If x is correlated with e 
 If A10.3* is violated, then OLS is biased and inconsistent 

o Coefficient on x will pick up the effects of the parts of e that are correlated with it 

in addition to the direct effects of x 

o Direction of bias depends on sign of correlation between x and e 

 Measurement error (discussed above under internal validity) 

o Suppose that the dependent variable is measured accurately but that we measure 

x with error: .i i ix x    

o The estimated model is  1 2 2i i i iy x e     . 

o Because  is part of x  and therefore correlated with it, the composite error term 

is now correlated with the actual regressor, meaning that b2 is biased and 

inconsistent.  

 If e and  are independent and normal, then 
2

2 22 2
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 The estimator is biased toward zero. 

 If most of the variation in x  comes from x, then the bias will be small. 

 As the variance of the measurement error grows in relation to the 

variation in the true variable, the magnitude of the bias increases. 

 As a worst-case limit, if the true x doesn’t vary across our sample of 

observations and all of the variation in our measure x  is random noise, 

then the expected value of our coefficient is zero. 

o Best solution is getting a better measure. 

o Alternatives are instrumental variables or direct measurement of degree of 

measurement error.  

 For example, if an alternative, precise measure is available for some 

arguably random sub-sample of observations, then we can calculate the 

variance of the true variable and the variance of the measurement error 

and correct the estimate. 

 Omitted-variables bias 
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o We derived this result at the beginning of the multiple regression analysis 

o Omitted variable is included in error. If omitted variable is correlated with 

included variable, then OLS estimator of coefficient on included variable is 

biased and inconsistent. 

 Simultaneous-equations bias (simultaneity bias) 

o Suppose that y and x are part of a larger theoretical system of equations: 

1 2

1 2

y x e

x y u

    
    

 

o The two variables are “jointly determined” and both are endogenous. 

 There is “feedback” from y to x, or “reverse causality” (actually, 

bidirectional) 

o e y x  , so e and x are correlated 

o Supply and demand curves are difficult to estimate because both q and p are 

endogenous 

Instrumental variables 

 Recall the method of moments analysis by which we derived the OLS estimators 

o We used the assumed population moment conditions 

   0, cov , 0E e x e   to derive the OLS normal equations as sample moment 

conditions: 2

1 1

1 1
ˆ ˆ0, 0

N N

i i i
i i

e x e
N N 

    

o If  cov , 0x e  , then the population moment conditions are invalid and we will 

get biased and inconsistent estimators from the OLS sample moment conditions. 

 The instrumental-variables estimator can be derived from the method of moments. 

 As usual, suppose that 1 2 ,y x e    but suppose that  cov , 0.x e   

 Let z be a variable with the following properties: 

o z does not have a direct effect on y. It does not belong in the equation alongside 

x. (z affects y only through x, not independently.) 

o z is exogenous. It is not correlated with e. 

o z is strongly correlated with x, the endogenous regressor. 

 This makes z a valid instrumental variable. 

 We can exploit  cov , 0z e   as our second moment condition in place of  cov , 0x e  , 

which is not true for this model. 

 The sample moment conditions are 
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 Solving the normal equations yields 
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 Compare this to the standard OLS slope estimator 
  

  
1

2

1

.

N

i i
i
N

i i
i

x x y y
b

x x x x





 


 




 

 In matrix terms,   1ˆ  Z X Z y   vs.   1 b X X X y  

 Properties of IV estimator: 

o Consistent as long as z is exogenous 

o Asymptotically normal 

o 
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o As usual, we estimate 2 by 
 2
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 Weak instruments: If rxz is near zero, then the variance of 2̂  is large and the IV 

estimator is unreliable. 

Two-stage least squares 

 What if we have multiple strong instruments and/or multiple endogenous regressors in a 

multiple regression? 

 With more instruments than endogenous regressors, we have an “overidentified” system 

with alternative choices of instruments. 

o Suppose that xK  is endogenous but the first K – 1 regressors are exogenous 

o Suppose that z1 through zL are L valid instruments 

o Any linear combination of the instruments is admissible 

o Let’s choose the one that is more correlated with xK 

 To get that, we regress 1 2 2 1 1 1 1... ...K K K L L Kx x x z z v              

and use the fitted values ˆKx  as the instrument for xK 

 This amounts to doing two separate regressions, the first-stage regression of xK on the 

exogenous x variables and the instruments z, then a second-stage regression of 

1 2 2 1 1 ˆ... *K K K Ky x x x e        

 The estimators of  from the second-stage regression are called 2SLS estimators. 
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 But it’s not exactly like doing two separate regressions because our estimator of the error 

variance uses the actual values of xK rather than the fitted values: 

 2

1 2 ,2 ,
2 1

ˆ ˆ ˆ...
ˆ

N

i i K i K
i

IV

y x x

N K


    
 




 

o (If you do the second regression manually substituting in the fitted values, Stata 

will use the fitted values to calculate the residuals rather than the actual.) 

 2SLS easily extends to multiple endogenous regressors, as long as there are more 

independent instruments than endogenous regressors. 

o Suppose there are G “good” exogenous regressors, B = K – G  “bad” endogenous 

regressors, and L “lucky” instrumental variables. 

o L > B means overidentified, L = B is just identified, L < B means underidentified 

(and can’t be estimated by IV) 

o 1 2 2 1 1... ...G G G G K Ky x x x x e           

o First-stage regressions: 

1 2 2 1 1... ... , 1,...,G j j j Gj G j Lj L jx x x z z v j B                

o Get fitted values: 

 1 2 2 1 1
ˆ ˆˆ ˆ ˆˆ ... ... , 1,...,G j j j Gj G j Lj Lx x x z z j B               

o Regress original equation replacing endogenous regressors with fitted values 

1 2 2 1 1ˆ ˆ... ... *G G G G K Ky x x x x e           

 To implement 2SLS in Stata, use ivregress 2sls depvar exvars (endvars = instvars) , 

options 

Overidentification and generalized method of moments 

 If we have additional instruments beyond the minimum (i.e., an overidentified system), 

then we have more information than we need to estimate the model. 

 Suppose that z1 and z2 are both valid instruments for endogenous x 

 All three moment conditions: 
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are theoretically true. 

 This opens the door for two possibilities: 

o We can determine the degree to which we cannot satisfy all three of these 

conditions simultaneously and use that as evidence of whether the model’s 
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assumptions are valid. (If the model is perfect, then all three should be zero 

except for sampling error.) 

 These are specification tests discussed below 

o We can think about alternative estimators (called GMM estimators) that would 

minimize a weighted average of the squares of the m moments. 

o 2SLS is a GMM estimator with a particular weighting of the moment conditions. 

Instrument strength 

 A strong instrument must provide correlation with part of the endogenous regressor that 

is not explained by the other (exogenous) regressors. 

 Regression of 1 2 2 1 1 1 1...K K K Kx x x z v            allows us to test 1 = 0 with a 

standard F = t2 test. 

o However, conventional wisdom says that the instrument is weak unless F > 10 

rather than the standard critical values for testing this hypothesis. 

o This test can be applied with multiple instruments and one endogenous regressor, 

with 10 still being the traditional threshold for weak instruments. 

o (See HGL’s Appendix 10E for a really confusing exposition of the general test 

with multiple endogenous regressors) 

Specification tests 

 If the model is overidentified, then we can do two kinds of tests: 

o A Hausman test of whether the x variables that we are treating as endogenous 

truly are endogenous 

o A test of the overidentifying restrictions, which can be interpreted as a test of 

instrument validity 

 Hausman test 

o    0 1: cov , 0, : cov , 0H x e H x e   

o Under null hypothesis, OLS is consistent and efficient, IV is consistent but 

inefficient. Since both are consistent, ˆ 0q b    in large samples 

o Under alternative hypothesis, OLS is inconsistent but IV is consistent, so 
ˆ 0q b c     in large samples. 

o Stata command hausman implements the procedure 

o HGL gives alternative implementation adding residuals from first-stage 

regression to OLS of original equation and testing whether they are significant 

 Tests for instrument validity 

o Is z correlated with e? 
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 Can’t do direct test because we can’t get consistent estimators for e 

without valid instruments, and we can’t know whether instruments are 

valid without consistent estimator of e. 

 With extra instruments (overidentified model), we can use some to test 

the others. 

o LM test: Do 2SLS/IV, get residuals, regress ê  on all z instruments and 

exogenous regressors, under null hypothesis that all instruments are valid, NR2 

from this regression ~ 2 with L – B degrees of freedom. 

o The J statistic is another common test of overidentifying restrictions: 

 As above, regress the 2SLS/IV residuals on the exogenous variables in 

the equation and all the instruments. 

 Compute the F statistic for the null hypothesis that the coefficients on the 

instruments are zero. 

 The test statistic LF (where L is the number of instruments) is 

asymptotically distributed as a 2 with L – B degrees of freedom (number 

of instruments – number of endogenous regressors = number of 

overidentifying restrictions to be tested). 

 Why does the J test or the LM test work? 

 If the instruments are exogenous, then they should not be 

correlated with y except through their effects on x.  

 The 2SLS residuals are the part of y that is orthogonal to the part 

of z that works through x.  

 If that is the only correlation that z has with y (there is no direct 

effect either direction), then the residuals should be uncorrelated 

with z, conditional on the other x variables, the included 

exogenous variables. 

o Rejection of the null hypothesis tells us that at least one of the overidentifying 

restrictions does not hold, which may mean that one or more of the instruments 

is invalid. 


