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Economics 312 

Sample Project Report 

Jeffrey Parker 

 

Introduction 

This project is based on Exercise 2.12 on page 81 of the Hill, Griffiths, and Lim text. It 

examines how the sale price of houses in Stockton, California, are affected by house characteristics 

including living area, age, and lot size.  

Data 

The project uses a dataset called stockton4.dta from the authors’ collection. The data 

definition file provided by the authors is reproduced below: 

sprice livarea beds baths lgelot age pool 
 
  Obs:   1500 home sales in Stockton, CA from Oct 1, 1996 to Nov 30, 1998 
    
  This is a subset of stockton3.dat, the first 1500 observations 
 
 sprice         selling price of home, dollars 
 livarea        living area, hundreds of square feet 
 beds           number of beds 
 baths          number of baths 
 lgelot         =1 if lot size > .5 acres, 0 otherwise 
 age            age of home at time of sale, years 
 pool           =1 if home has pool, 0 otherwise 
            
Data source: Dr. John Knight, Department of Finance, University of the Pacific  
 
 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
      sprice |      1500    123693.9    63250.89      22000     713000 
     livarea |      1500    16.74667    5.461963          7         49 
        beds |      1500    3.285333     .619818          1          6 
       baths |      1500       2.133    .5253523          1        6.5 
      lgelot |      1500    .0633333    .2436428          0          1 
-------------+-------------------------------------------------------- 
         age |      1500       21.86    13.11464          0         97 
        pool |      1500    .0653333    .2471955          0          1 
 

Estimating the relationship between house value and living area (Parts a–e) 

(a) We begin by examining the bivariate relationship between selling price and living area. 

The figure below shows that there is generally a positive relationship between the variables—larger 

houses tend to be more expensive. The relationship is plausibly linear for the smaller houses that 

comprise most of the observations. There are a few notable outliers, including one small house that 
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sold for several times the amount of the next most expensive house of similar size. The figure also 

shows one limitation of the data: the living-area variable appears to be rounded to the nearest 

hundred. 

 

 

(b) A bivariate regression of selling price on living area yields an estimated slope of 9182. 

(See regression table below.) This means that an increase of 100 square feet of living area (the size of 

one small room) raises the expected selling price by $9,182.  

The estimated intercept of the linear relationship is –30069. If the same linear relationship 

extended down to houses of zero size (an empty lot?), then the intercept could be interpreted as the 

value of such a “null” house. However, there are no houses below 700 square feet in the sample, so 

such an interpretation entails the dangerous practice of out-of-sample extrapolation. Moreover, 

given that the estimated intercept is negative, it seems likely that extrapolating the estimated linear 

relationship to zero living area is unreliable. 

The estimated fitted line is graphed below (in part d). 

 

. reg sprice livarea 
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      Source |       SS       df       MS              Number of obs =    1500 
-------------+------------------------------           F(  1,  1498) = 2535.97 
       Model |  3.7700e+12     1  3.7700e+12           Prob > F      =  0.0000 
    Residual |  2.2270e+12  1498  1.4866e+09           R-squared     =  0.6287 
-------------+------------------------------           Adj R-squared =  0.6284 
       Total |  5.9970e+12  1499  4.0007e+09           Root MSE      =   38557 
 
------------------------------------------------------------------------------ 
      sprice |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
     livarea |   9181.711   182.3272    50.36   0.000     8824.067    9539.355 
       _cons |   -30069.2   3211.568    -9.36   0.000    -36368.85   -23769.55 
------------------------------------------------------------------------------ 
 

 (c) Both the scatter plot and the counterintuitive negative intercept suggest that the 

relationship between price and living area might be nonlinear. We next examine a restricted 

quadratic form in which price is a linear function of squared living area (livarea2). 

 

. reg sprice livarea2 
 
      Source |       SS       df       MS              Number of obs =    1500 
-------------+------------------------------           F(  1,  1498) = 2924.16 
       Model |  3.9655e+12     1  3.9655e+12           Prob > F      =  0.0000 
    Residual |  2.0315e+12  1498  1.3561e+09           R-squared     =  0.6613 
-------------+------------------------------           Adj R-squared =  0.6610 
       Total |  5.9970e+12  1499  4.0007e+09           Root MSE      =   36826 
 
------------------------------------------------------------------------------ 
      sprice |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    livarea2 |    212.611   3.931742    54.08   0.000     204.8987    220.3233 
       _cons |   57728.31    1546.67    37.32   0.000     54694.44    60762.18 
------------------------------------------------------------------------------ 
 

 The estimated relationship is once again positive, with an increase of 1 unit in the square 

living area variable leading to a rise of $213 in price. In order to interpret this more meaningfully, we 

must examine the marginal effect of living area on price, which is not constant in the nonlinear 

function: 

22 ,
SPRICE

LIVAREA
LIVAREA
∂

= α
∂

 

where α2 is the coefficient on living area squared. Thus, for a house of 1,500 square feet of living 

area (LIVAREA = 15), the estimated marginal effect is 2 × 212.6 × 15 = $6,378. This would be the 

estimated effect on expected selling price of an increase of 100 square feet for a house of 1,500 

square feet. This is a considerably smaller estimated effect of living area than the $9,181 that we 

obtained in the linear specification. 



4 

 

 

 (d) The graph below shows the scatter plot (blue dots) with the linear (red dots) and 

quadratic (green dots) fitted values: 

 

 It appears that the quadratic function form fits the data slightly better at both the upper and 

lower extremes of the sample. Although extrapolation outside the sample is always risky, it is also 

worth noting that the quadratic model predicts a positive value ($57,728) for a lot with a house of 

zero area, which is more plausible than the negative prediction of the linear model. 

 The graph also shows that the estimated quadratic function (green) is flatter than the 

estimated linear function (red) for a 1,500 square foot house, as demonstrated by the smaller 

estimated marginal effect at that size calculated in part (c). 

 Because the dependent variable is the same in both models, we can compare the sum of 

squared residuals to provide further evidence about which model fits the data better. The SSE for the 

linear model is 2.2270 × 1012 whereas the SSE for the quadratic model is 2.0315 × 1012. This evidence 

supports the quadratic model as it has about 10% small sum of squared residuals than the linear 

model. 
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 (e) To examine whether lot size affects the relationship between living space and selling 

price, we estimate separate quadratic regressions for houses on large lots and those on small lots. 

The large-lot regression is 

. reg sprice livarea2 if lgelot==1 
 
      Source |       SS       df       MS              Number of obs =      95 
-------------+------------------------------           F(  1,    93) =  175.70 
       Model |  9.9495e+11     1  9.9495e+11           Prob > F      =  0.0000 
    Residual |  5.2663e+11    93  5.6627e+09           R-squared     =  0.6539 
-------------+------------------------------           Adj R-squared =  0.6502 
       Total |  1.5216e+12    94  1.6187e+10           Root MSE      =   75251 
 
------------------------------------------------------------------------------ 
      sprice |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    livarea2 |   193.8298   14.62285    13.26   0.000     164.7917    222.8679 
       _cons |   113279.4   12824.64     8.83   0.000     87812.16    138746.6 
------------------------------------------------------------------------------ 
 
For smaller lots, the regression is 

. reg sprice livarea2 if lgelot==0 
 
      Source |       SS       df       MS              Number of obs =    1405 
-------------+------------------------------           F(  1,  1403) = 1749.57 
       Model |  1.5997e+12     1  1.5997e+12           Prob > F      =  0.0000 
    Residual |  1.2828e+12  1403   914323077           R-squared     =  0.5550 
-------------+------------------------------           Adj R-squared =  0.5546 
       Total |  2.8825e+12  1404  2.0530e+09           Root MSE      =   30238 
 
------------------------------------------------------------------------------ 
      sprice |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    livarea2 |   186.8586   4.467319    41.83   0.000     178.0952    195.6219 
       _cons |   62172.41   1503.058    41.36   0.000     59223.92    65120.89 
------------------------------------------------------------------------------ 
 

 Before proceeding to compare the results, we note that only 95 of the 1,500 houses in the 

sample are on large lots, thus we must interpret the results for this subsample with some caution. 

Based on our sample, additional living area appears to have a larger price effect if the house is on a 

large lot than if it is on a small lot. (This is consistent with my intuition because big houses fit better 

on larger lots.)  

The estimated coefficient on living area squared is smaller in both subsamples than it is in the 

full sample. When controlling crudely for lot size, house size seems to matter less. This suggests that 

when we do not control for lot size, the house size variable might be picking up some of the effect 

that is actually due to lot size. In other words, some of the large houses may be expensive not only 

because the houses are large, but because the lots are large. This omitted-variable bias would be 

present if large houses tend to be on large lots (and lot size matters for selling price). The result 

reported below verifies that the average living area on large lots is 2,463 square feet compared to 
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1,621 square feet on smaller lots, supporting our result that failure to correct for lot size leads to an 

overestimation of the effect of house size. 

. by lgelot: summarize livarea 
 
--------------------------------------------------------------------------------------
- 
-> lgelot = 0 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
     livarea |      1405    16.21352    4.585679          7         49 
 
--------------------------------------------------------------------------------------
- 
-> lgelot = 1 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
     livarea |        95    24.63158    9.724998          8         48 
 
 
  A logical way to compare the marginal effects of living space in the two subsamples is to 

evaluate each at the subsample mean. For large lots, the mean of LIVAREA is 24.63 and the 

coefficient on LIVAREA2 is 193.8, so the marginal effect evaluated at the mean is 2 × 193.8 × 24.63 = 

$9,549. For smaller lots, the corresponding calculation is 2 × 186.9 × 16.21 = $6,059. Thus, an 

additional 100 square foot room is worth much more if added to a house on a large lot than to one 

on a smaller lot. 

Other determinants of house selling price (parts f and g) 

 (f) The age of a house may also influence its selling price. The regression below shows that 

the linear relationship between selling price and age is negative: a house that is one year older is 

expected to sell for $627 less. The intercept of 137,404 could be interpreted as the expected selling 

price of a new house (AGE = 0). There are some houses of age zero in the sample, so this is not an 

out-of-sample extrapolation. 

. reg sprice age 
 
      Source |       SS       df       MS              Number of obs =    1500 
-------------+------------------------------           F(  1,  1498) =   25.77 
       Model |  1.0141e+11     1  1.0141e+11           Prob > F      =  0.0000 
    Residual |  5.8956e+12  1498  3.9357e+09           R-squared     =  0.0169 
-------------+------------------------------           Adj R-squared =  0.0163 
       Total |  5.9970e+12  1499  4.0007e+09           Root MSE      =   62735 
 
------------------------------------------------------------------------------ 
      sprice |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         age |   -627.161   123.5524    -5.08   0.000     -869.515   -384.8069 
       _cons |   137403.6   3149.347    43.63   0.000       131226    143581.2 
------------------------------------------------------------------------------ 
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An alternative functional form for the relationship would be to regress the log of selling price 

on age. This is done in the table below. 

. g lnsprice = ln(sprice) 
 
. reg lnsprice age 
 
      Source |       SS       df       MS              Number of obs =    1500 
-------------+------------------------------           F(  1,  1498) =   41.45 
       Model |  5.84157999     1  5.84157999           Prob > F      =  0.0000 
    Residual |  211.122211  1498  .140936055           R-squared     =  0.0269 
-------------+------------------------------           Adj R-squared =  0.0263 
       Total |  216.963791  1499   .14473902           Root MSE      =  .37541 
 
------------------------------------------------------------------------------ 
    lnsprice |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         age |    -.00476   .0007394    -6.44   0.000    -.0062103   -.0033097 
       _cons |   11.74597   .0188462   623.26   0.000     11.70901    11.78294 
------------------------------------------------------------------------------ 
 
 Again, the relationship between selling price and age is negative. The estimated coefficient of 

–0.00476 can be interpreted as reflecting a 0.476% reduction in selling price for each additional year 

of age. 

 The first scatter plot below shows the relationship between selling price and age. It is a large 

cluster of points without an obvious linear relationship and with numerous outliers. Moreover, all of 

the outliers are above the cluster. The second plot shows the relationship between log price and age, 

which seems slightly more linear and where the outliers occur on both sides. Based on visual fit, I’d 

prefer the log model. 
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 (g) Finally, we estimate the relationship between price and the dummy variable indicating lot 

size. We established above that controlling for lot size by splitting the sample had a large effect on 

the estimated coefficient for living area, which suggests that lot size may be an important 

determinant of selling price. Because of the binary nature of the lot size variable, we are restricted to 

a rather crude way of characterizing the relationship between lot size and selling price, but our 

model should indicate the direction effectively. The results, shown in the table below, demonstrate 

the expected relationship. Lots larger than ½ acre are expected to sell for $133,797 more than those 

on smaller lots. The estimated intercept term of $115,220 is the expected selling price of a house on a 

small lot, where LGELOT = 0. 

. reg sprice lgelot 
 
      Source |       SS       df       MS              Number of obs =    1500 
-------------+------------------------------           F(  1,  1498) =  541.83 
       Model |  1.5930e+12     1  1.5930e+12           Prob > F      =  0.0000 
    Residual |  4.4041e+12  1498  2.9400e+09           R-squared     =  0.2656 
-------------+------------------------------           Adj R-squared =  0.2651 
       Total |  5.9970e+12  1499  4.0007e+09           Root MSE      =   54221 
 
------------------------------------------------------------------------------ 
      sprice |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      lgelot |   133797.3   5747.992    23.28   0.000     122522.4    145072.3 
       _cons |     115220   1446.546    79.65   0.000     112382.5    118057.5 
------------------------------------------------------------------------------ 
 

Conclusions and validity assessment 

 The sample of 1500 houses in Stockton yields estimates of the effects of living area, lot size, 

and age of home that confirm intuition. Larger and newer houses and larger lots seem to be 

associated with higher selling prices. 

The assumptions of the least-squares model seem reasonable for this application, with some 

qualifications:  

• Autocorrelation between the error terms of nearby houses could be a problem: there 

may be unobserved neighborhood characteristics that would affect all houses in an area in a 

similar way. Correcting for this, if possible, might give more efficient estimators, though the 

OLS coefficient estimators are still unbiased.  

• Reverse causality does not seem to be a worry here. The characteristics of the house 

that we have used on the right-hand side are determined before the sale, so it is unlikely that 

random variation in the selling price would have any influence on them.  

• Homoskedasticity and normality. It is more problematic to assume that all houses 

in the sample have equal error variance. Big houses that are expected to sell for $500,000 

would logically have a larger error variance than smaller houses with expected price of 

$150,000. These considerations of the distribution of the error term point toward using the 
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log of selling price as the dependent variable because I think it is more likely that percentage 

deviations from expected selling price are symmetrically distributed with constant variance 

than the dollar deviations. This means that the assumptions of homoskedasticity and 

normality are more plausible when using log(price) than when using price. Failure to 

account properly for heteroskedasticity leads to inefficient, but still unbiased, coefficient 

estimators. 

• Omitted variables. Because we have identified several characteristics that seem to be 

associated with selling price, it would be useful to include all of them in the same regression 

equation using multiple regression. This would mitigate possible issues of omitted-variables 

bias such as the one we identified when estimating the effects of living area separately for 

large and small lots. Such omitted-variable bias manifests itself as correlation between the 

regressor and the error term that includes the effect of the omitted variable. 

• Functional form. The fact that the quadratic (for living area) and logarithmic (for 

age) functions fit better than linear models suggests that some additional exploration of 

nonlinear forms might be appropriate.  

With respect to external validity, we have no information on how the sample was drawn, so 

it is difficult to assess whether the sample accurately represents real estate in Stockton, California. 

The sample is now more than a decade old, so any applications to the modern housing market 

would need to be updated for inflation. Moreover, it is possible that the value attached to specific 

house characteristics may be different now than in 1996–98. 

It is difficult to know how the effects of home characteristics on prices in Stockton might 

differ from those in other cities. One would expect some differences in effects across cities associated 

with variations in demographics, topographical features, and population density, so it would be 

unwise to apply specific results from this study to other urban areas. 


