Economics 201
Fall 2013
Introduction to Economic Analysis
Jeffrey Parker Dairy Farms Input Case Solutions

1. From Table 1 of the original case, we can calculate the marginal product of feed as $\Delta$ Milk $\Delta$ Feed and (because the firms are competitive in the milk market so $M R=P$ ) the marginal revenue product as $\frac{\Delta \text { Milk }}{\Delta \text { Feed }} \times P$. For example, moving between 5654 pounds of feed and 6117, we calculate $M P$ as $\frac{8184-7626}{6117-5654}=\frac{558}{463}=1.205$. The $M R P=M P \times P$, so $M R P$ at that level of feed input is $1.205 \times \$ 0.30=\$ 0.362$ when the price of milk is $\$ 0.30$. (Note that this is for one cow, but the calculation would be the same for 25 cows because both numerator and denominator would just be multiplied by 25.) By similar calculations we get the following table of $M P$ and $M R P$ at various feed levels:

| Ave <br> Nutrients <br> Consumed | Ave Milk <br> Produced | Ave Nutrients <br> Consumed | MP of Feed | MRP of Feed <br> $@$ P $=\$ 0.30$ |
| :---: | :---: | :---: | :---: | :---: |
| 5654 | 7626 | 5654 |  |  |
| 6117 | 8184 | 6117 | 1.205 | $\$ 0.362$ |
| 6575 | 8824 | 6575 | 1.397 | $\$ 0.419$ |
| 7132 | 9400 | 7132 | 1.034 | $\$ 0.310$ |
| 7531 | 9780 | 7531 | 0.952 | $\$ 0.286$ |
| 7899 | 9965 | 7899 | 0.503 | $\$ 0.151$ |

2. At $\$ 0.24$ per pound, the optimal level of nutrient input (among those listed in the table) is 7531 . Raising feed from 7132 to 7531 yields $\$ 0.286$ per pound of feed, which is greater than the $\$ 0.24$ that each pound costs. Raising feed input further to 7899 per cow only yields $\$ 0.151$ in revenue per pound of feed, which is less than the cost. Milk output at 7531 pounds of feed is 9780 pounds of milk per cow, or $25 \times 9780=$ 244,500. Calculating the output and cost levels associated with the values above gives:

| Ave Milk <br> Produced | Total Milk <br> Produced | Ave Nutrient <br> Consumed | Ave Nutrient <br> Purchased | Total Nutrient <br> Purchased | Variable Cost <br> $@ \$ 0.24$ | Marginal <br> Cost @ <br> $\$ 0.24$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7626 | 190,650 | 5654 | 2654 | 66,350 | $\$ 15,924$ |  |
| 8184 | 204,600 | 6117 | 3117 | 77,925 | $\$ 18,702$ | $\$ 0.199$ |
| 8824 | 220,600 | 6575 | 3575 | 89,375 | $\$ 21,450$ | $\$ 0.172$ |
| 9400 | 235,000 | 7132 | 4132 | 103,300 | $\$ 24,792$ | $\$ 0.232$ |
| 9780 | 244,500 | 7531 | 4531 | 113,275 | $\$ 27,186$ | $\$ 0.252$ |
| 9965 | 249,125 | 7899 | 4899 | 122,475 | $\$ 29,394$ | $\$ 0.477$ |

If the price of milk output is $\$ 0.30$ per pound, then the optimal output (among those in the table) is indeed 244,500 , because increasing output to 249,125 costs $\$ 0.477$ per pound but each pound can be sold for only $\$ 0.30$.

This corresponds directly with the result of the calculation above for the optimal level of nutrients, as indeed it must.
3. If the milk price falls to $\$ 0.24$, then from the output table in Question 2 the optimal output level becomes 235,000 . The step from 235,000 to 244,500 costs $\$ 0.252$ per pound and now yields only $\$ 0.24$ in revenue per pound, so it lowers profit. In terms of feed inputs, the marginal product is unchanged, but the marginal revenue product declines:

| Ave <br> Nutrients <br> Consumed | MP of Feed | MRP of <br> Feed @ <br> $\mathrm{P}=0.24$ |
| :---: | :---: | :---: |
| 5654 |  |  |
| 6117 | 1.205183585 | $\$ 0.289$ |
| 6575 | 1.397379913 | $\$ 0.335$ |
| 7132 | 1.034111311 | $\$ 0.248$ |
| 7531 | 0.952380952 | $\$ 0.229$ |
| 7899 | 0.502717391 | $\$ 0.121$ |

The optimal nutrient input at $\$ 0.24$ per pound of nutrient is now 7132 . Increasing from 7132 to 7531 costs $\$ 0.24$ per pound of nutrient but yields only $\$ 0.229$ in revenue per pound of nutrient added. This corresponds exactly to the reduction in optimal output calculated above.

