

Econ 314

Monday, April 6 Quantitative Implications of Price Stickiness and Dynamic Price Setting

Reading: Romer's Sections 6.6 – 6.8 and 7.1 Coursebook: Chapter 12 Class notes: Pages 117 to 122

Today's Far Side offering

You may have noticed that the board outside my office tends to have a lot of dog comics, while Noel's has a lot of cat comics. I'm especially fond of comics in which dogs are asserting their obvious superiority to cats.

"You have to prime it, you know."

Context and overview

- In the last class (April 3), we applied the ideas of strategic complementarity, multiple equilibria, and coordination failure to price setting in the macroeconomy
- We concluded with the idea that the social costs of price stickiness to the overall economy could be larger than the private costs to firms
- **How much larger**? We start by calibrating the model and examining whether the social/private cost gap is important
- Then we begin the analysis of **dynamic price setting** by laying the foundation of a model in which the price set in each period is the baseline price for the next

Reviewing the optimal pricing equation

• Profit-maximization implies
$$\frac{P_i}{P} = \left(\frac{\eta}{\eta-1}\right) \left(\frac{W}{P}\right)$$
 or $\frac{P_i}{P} = \frac{\eta}{\eta-1} Y^{\gamma-1}$

• In log terms:
$$p_i^* - p = c + \phi y$$
, with $c \equiv \ln\left(\frac{\eta}{\eta - 1}\right)$ and $\phi = \gamma - 1 > 0$

- Since y = m p, can also write as $p_i^* = c + \phi m + (1 \phi) p$
- If there is **greater real rigidity** \rightarrow smaller value of ϕ
- Optimal price is more sensitive to others' price and less sensitive to AD shocks

Calculating profit with fixed/flexible price

- We can derive the expression in the model for firm's profit as a function of its own price, its rivals' price, and aggregate demand: $\Pi(P_i, P; M) = \frac{M}{P} \left(\frac{P_i}{P}\right)^{1-\eta} - \left(\frac{M}{P}\right)^{\frac{1+\nu}{\nu}} \left(\frac{P_i}{P}\right)^{-\eta}, \quad \nu \equiv \frac{1}{\gamma - 1}$
- This is the profit function that we used in the last class when we derived the thresholds for price adjustment when others do and do not adjust
- We can substitute in $P_i = P^*$ or P_0 and $P = P^*$ or P_0 to compute the thresholds as the difference between profit when adjusting price and profit when keeping price fixed

Calibrating profit thresholds

- Details of equations are on pages 117 and 118 of notes
- In Chapter 6, Romer calibrates
 - $\eta = 5$ (which is a markup ratio of 1.25, or 25%)
 - v = 0.1 (because labor supply is not very elastic)
- With this calibration, menu cost would have to be 25% of total revenue for firm to keep prices sticky when AD changes 3%
 - Not enough stickiness to matter
 - Social externality from stickiness is also small, so low social costs

Ball and Romer (1990) Table 1

TABLE 1

Baseline Model

		Private	cost/R	
Labour supply		Markup ($1/(\varepsilon - 1))$	
$(1/(\gamma-1))$	5%	15%	50%	100%
0.05	2.38/1.05	2.16/1.16	1.64/1.55	$1 \cdot 22/2 \cdot 10$
0.15	0.79/1.06	0.71/1.19	0.53/1.65	0.39/2.31
0.50	0.23/1.10	0.20/1.30	0.14/2.04	0.10/3.13
1.00	0.11/1.15	0.10/1.47	0.06/2.67	0.04/4.50

Note. Private cost is for a 5% change in money, and is measured as a percentage of revenue when prices are flexible.

Alternative models

- Ball and Romer propose two alternative models that would increase rigidity and social externalities
 - Customer markets model
 - Leads to something like a kinked demand curve at current price
 - Rivals more likely to follow a price cut than a price increase
 - We'll look at this one in a little more detail
 - Real-wage function
 - Replacing market-clearing labor market with sluggish wage adjustment based on output gap
 - Equivalent to having higher labor supply elasticity

Customer markets

- Each customer has a current "home" market, will probably shop there unless induced to change
- Price information is imperfect: customer knows his home market, but not others (without search)
- Increase in price at home market may induce search for new home market: lowers quantity demanded
- Decrease in price does not affect home customers and few others see it: doesn't raise demand much
- Conclusion: Demand is elastic above current price, inelastic below

Kinked demand curve?

Ball and Romer's implementation

TA	BL	Æ	2

Customer markets model

			Private $cost/R$ for various degrees of real rigidity			lity
			$1/(\eta - 1) = 0.15, 1/(\gamma - 1) = 0.15$		$1/(\eta - 1) = 0.15, 1/(\gamma - 1) = 1.00$	
TABLE 1			π	PC/R	π	PC/R
Baseline Model			0.127*	0.71/1.19	0.115*	0.10/1.47
			0.020	0.28/3.04	0.020	0.04/3.37
Private	cost/R		0.025	0.14/6.09	0.025	0.02/6.75
			0.010	0.06/15.2	0.010	0.01/16.9
Markup ($(1/(\varepsilon - 1))$		0.005	0.03/30.4	0.005 0.00/33.7	
			0.002	0.01/76.1	0.002	0.00/84.3
15%	50%	100%	0.001	0.01/152.1	0.001	0.00/168.6
2.16/1.16	1.64/1.55	$1 \cdot 22/2 \cdot 10$	$1/(\eta-1)=1$	00, $1/(\gamma - 1) = 0.15$	$1/(\eta-1)=1$	00, $1/(\gamma - 1) = 1.00$
0.71/1.19 0.20/1.30	0.53/1.65 0.14/2.04	0.39/2.31 0.10/3.13	π	PC/R	π	PC/R
0.10/1.47	0.06/2.67	0.04/4.50	0.474*	0.30/2.31	0.333*	0.04/4.50
ge in money, and is measured as a percentage of		0.200	0.17/5.37	0.200	0.03/7.50	
		0.020	0.04/21.5	0.050	0.01/30.0	
			0.025	0.02/43.0	0.025	0.00/60.0
			0.010	0.01/107.5	0.010	0.00/150.0
			0.005	0.00/214.9	0.005	0.00/300.0
			0.002	0.00/537.3	0.002	0.00/750.0
			0.002	0.00/ 22/.2	0.002	0.00/750.0

* Real rigidity when $\rho = 0$

Note. Private cost is for a 5% change in revenue, and is measured as a percentage of revenue when prices are flexible.

IABLE I Baseline Model					
Private cost/R					
Labour supply elasticity – (1/(γ-1))	Markup $(1/(\varepsilon - 1))$				
	5%	15%	50%	100%	
0.05	2.38/1.05	2.16/1.16	1.64/1.55	1.22/2.10	
0.12	0.79/1.06	0.71/1.19	0.53/1.65	0.39/2.31	
0.50	0.23/1.10	0.20/1.30	0.14/2.04	0.10/3.13	
1.00	0.11/1.15	0.10/1.47	0.06/2.67	0.04/4.50	

Note. Private cost is for a 5% chan revenue when prices are flexible.

Dynamic price setting

- What is the dynamic-optimal price to set if that price is likely to be in effect for multiple periods instead of just one?
- Intuitive answer: "an average of the expected static-optimal price for each future period, weighted by the probability that the price is in effect for that period."
- Romer's model in Section 7.1
 - Mostly similar to our earlier model, but with discounting β and tradeoffs for intertemporal consumption λ
 - These aspects are less quantitatively important, so we'll focus on others to get intuition

Dynamic optimal pricing

- Static optimal price at *t*: $p_t * = p_t + \phi(m_t p_t) = \phi m_t + (1 \phi) p_t$
- How likely is price set at time 0 to be still in effect after *t* periods?
 - Let that probability be q_t
 - For fixed-price contract, $q_t = 1$ for life of contract, $q_t = 0$ after expiration
- Dynamic optimal price to set at 0 is weighted average of expected future optimal prices, with weights determined by *q*:

$$p = \sum_{t=0}^{\infty} q_t E_0 \left(p_t^* \right) \times \frac{1}{\sum_{\tau=0}^{\infty} q_\tau}$$

• Last denominator makes sure that weights add up to one

Dynamic optimal pricing

• Let
$$\omega_t = \frac{q_t}{\sum_{\tau=0}^{\infty} q_{\tau}}$$

• Dynamic optimal price, then, is

$$p = \sum_{t=0}^{\infty} \omega_t E_0(p_t^*) = \sum_{t=0}^{\infty} \omega_t E_0(\phi m_t + (1 - \phi)p_t)$$

- Optimal price is weighted average of expected future AD and expected future prices set by overall market
 - More real rigidity → smaller \$\u03c6\$ and more weight to market price, less to AD

Some common models

• Fixed-price contracts of length *n*:

$$\omega_t = \frac{1}{n}$$

• Calvo's model with fixed probability α of changing price:

$$q_t = (1 - \alpha)^t$$
$$\omega_t = \frac{(1 - \alpha)^t}{\sum_{\tau=0}^{\infty} (1 - \alpha)^{\tau}} = \frac{(1 - \alpha)^t}{1 / (1 - (1 - \alpha))} = \alpha (1 - \alpha)^t$$

Review and summary

- We began by considering the **empirical importance** of coordination failures due to real rigidities
 - Not too important in standard model
 - Much more important if we augment the model for **customer markets** or **wage adjustment** other than market clearing
- We considered how a firm in a dynamic environment would set prices taking into account that **prices might be in place more than one period**
 - Set price at **average optimal price** over the future
 - Weight the average by the probability that today's price will still be in place in each future period

Something different: A puzzle

Given that this is a quantitative class, a numerical puzzle seems appropriate:

What is the pattern in the following numerical sequence?

8, 5, 4, 9, 1, 7, 6, 10, 3, 2

[Using the Internet to find the solution is cheating!]

What's next?

- We next turn to several models of price fixity that apply the principle of dynamic price setting
 - Fischer's predetermined-price model (April 8)
 - Taylor's **fixed-price model** (April 10)
 - Calvo's **probabilistic model** of price setting (April 10)