Econ 314

Monday, April 6

Quantitative Implications of Price Stickiness and Dynamic Price Setting

Reading: Romer's Sections 6.6-6.8 and 7.1
Coursebook: Chapter 12
Class notes: Pages 117 to 122

Today's Far Side offering

You may have noticed that the board outside my office tends to have a lot of dog comics, while Noel's has a lot of cat comics. I'm especially fond of comics in which dogs are asserting their obvious superiority to cats.

Context and overview

- In the last class (April 3), we applied the ideas of strategic complementarity, multiple equilibria, and coordination failure to price setting in the macroeconomy
- We concluded with the idea that the social costs of price stickiness to the overall economy could be larger than the private costs to firms
- How much larger? We start by calibrating the model and examining whether the social/private cost gap is important
- Then we begin the analysis of dynamic price setting by laying the foundation of a model in which the price set in each period is the baseline price for the next

Reviewing the optimal pricing equation

- Profit-maximization implies $\frac{P_{i}}{P}=\left(\frac{\eta}{\eta-1}\right)\left(\frac{W}{P}\right)$ or $\frac{P_{i}}{P}=\frac{\eta}{\eta-1} Y^{\gamma-1}$
- In log terms: $p_{i}^{*}-p=c+\phi y$, with $c \equiv \ln \left(\frac{\eta}{\eta-1}\right)$ and $\phi=\gamma-1>0$
- Since $y=m-p$, can also write as $p_{i}^{*}=c+\phi m+(1-\phi) p$
- If there is greater real rigidity \rightarrow smaller value of ϕ
- Optimal price is more sensitive to others' price and less sensitive to AD shocks

Calculating profit with fixed/flexible price

- We can derive the expression in the model for firm's profit as a function of its own price, its rivals' price, and aggregate demand:

$$
\Pi\left(P_{i}, P ; M\right)=\frac{M}{P}\left(\frac{P_{i}}{P}\right)^{1-\eta}-\left(\frac{M}{P}\right)^{\frac{1+v}{v}}\left(\frac{P_{i}}{P}\right)^{-\eta}, \quad v \equiv \frac{1}{\gamma-1}
$$

- This is the profit function that we used in the last class when we derived the thresholds for price adjustment when others do and do not adjust
- We can substitute in $P_{i}=P^{*}$ or P_{0} and $P=P^{*}$ or P_{0} to compute the thresholds as the difference between profit when adjusting price and profit when keeping price fixed

Calibrating profit thresholds

- Details of equations are on pages 117 and 118 of notes
- In Chapter 6, Romer calibrates
- $\eta=5$ (which is a markup ratio of 1.25 , or 25%)
- $v=0.1$ (because labor supply is not very elastic)
- With this calibration, menu cost would have to be 25% of total revenue for firm to keep prices sticky when AD changes 3\%
- Not enough stickiness to matter
- Social externality from stickiness is also small, so low social costs

Ball and Romer (1990) Table 1

TABLE 1
Baseline Model

	Private cost/R			
Labour supply elasticity	Markup $(1 /(\varepsilon-1))$			
$(1 /(\gamma-1))$	5%	15%	50%	100%
0.05	$2 \cdot 38 / 1 \cdot 05$	$2 \cdot 16 / 1 \cdot 16$	$1 \cdot 64 / 1 \cdot 55$	$1 \cdot 22 / 2 \cdot 10$
$0 \cdot 15$	$0 \cdot 79 / 1 \cdot 06$	$0 \cdot 71 / 1 \cdot 19$	$0 \cdot 53 / 1 \cdot 65$	$0 \cdot 39 / 2 \cdot 31$
0.50	$0 \cdot 23 / 1 \cdot 10$	$0 \cdot 20 / 1 \cdot 30$	$0 \cdot 14 / 2 \cdot 04$	$0 \cdot 10 / 3 \cdot 13$
$1 \cdot 00$	$0 \cdot 11 / 1 \cdot 15$	$0 \cdot 10 / 1 \cdot 47$	$0 \cdot 06 / 2 \cdot 67$	$0 \cdot 04 / 4 \cdot 50$

Note. Private cost is for a 5% change in money, and is measured as a percentage of revenue when prices are flexible.

Alternative models

- Ball and Romer propose two alternative models that would increase rigidity and social externalities
- Customer markets model
- Leads to something like a kinked demand curve at current price
- Rivals more likely to follow a price cut than a price increase
- We'll look at this one in a little more detail
- Real-wage function
- Replacing market-clearing labor market with sluggish wage adjustment based on output gap
- Equivalent to having higher labor supply elasticity

Customer markets

- Each customer has a current "home" market, will probably shop there unless induced to change
- Price information is imperfect: customer knows his home market, but not others (without search)
- Increase in price at home market may induce search for new home market: lowers quantity demanded
- Decrease in price does not affect home customers and few others see it: doesn't raise demand much
- Conclusion: Demand is elastic above current price, inelastic below

Kinked demand curve?

Ball and Romer's implementation

TABLE 2
Customer markets model

TABLE 1
Baseline Model

Labour supply elasticity $(1 /(\gamma-1))$	Private cost/R			
	Markup (1/($\varepsilon-1)$)			
	5\%	15\%	50\%	100\%
$0 \cdot 05$	2.38/1.05	2-16/1-16	1.64/1.55	1-22/2.10
$0 \cdot 15$	0.79/1.06	0.71/1-19	0.53/1.65	0.39/2.31
$0 \cdot 50$	$0 \cdot 23 / 1 \cdot 10$	0.20/1-30	0.14/2.04	$0 \cdot 10 / 3 \cdot 13$
1.00	0.11/1-15	$0 \cdot 10 / 1 \cdot 47$	$0 \cdot 06 / 2 \cdot 67$	0.04/4.50

Note. Private cost is for a 5% change in money, and is measured as a percentage of revenue when prices are flexible.

Private cost/ R for various degrees of real rigidity

$1 /(\eta-1)=0 \cdot 15,1 /(\gamma-1)=0 \cdot 15$		$1 /(\eta-1)=0 \cdot 15,1 /(\gamma-1)=1 \cdot 00$	
π	$P C / R$	π	$P C / R$
0.127*	0.71/1.19	0•115*	0.10/1.47
0.050	0.28/3.04	0.050	0.04/3.37
0.025	0.14/6.09	0.025	0.02/6.75
0.010	0.06/15.2	0.010	0.01/16.9
0.005	0.03/30-4	0.005	$0 \cdot 00 / 33 \cdot 7$
$0 \cdot 002$	0.01/76.1	0.002	0.00/84-3
$0 \cdot 001$	0.01/152.1	0.001	0.00/168.6
$1 /(\eta-1)=1 \cdot 00,1 /(\gamma-1)=0 \cdot 15$		$1 /(\eta-1)=1 \cdot 00,1 /(\gamma-1)=1 \cdot 00$	
π	$P C / R$	π	$P C / R$
0.474*	0.39/2.31	0.333*	0.04/4.50
$0 \cdot 200$	0.17/5.37	$0 \cdot 200$	0.03/7.50
$0 \cdot 050$	0.04/21.5	0.050	0.01/30.0
0.025	0.02/43.0	0.025	0.00/60.0
$0 \cdot 010$	0.01/107.5	0.010	$0 \cdot 00 / 150 \cdot 0$
0.005	0.00/214.9	0.005	0.00/300.0
$0 \cdot 002$	0.00/537.3	$0 \cdot 002$	0.00/750.0

* Real rigidity when $\rho=0$

Note. Private cost is for a 5% change in revenue, and is measured as a percentage of revenue when prices are flexible.

Dynamic price setting

- What is the dynamic-optimal price to set if that price is likely to be in effect for multiple periods instead of just one?
- Intuitive answer: "an average of the expected static-optimal price for each future period, weighted by the probability that the price is in effect for that period."
- Romer's model in Section 7.1
- Mostly similar to our earlier model, but with discounting β and tradeoffs for intertemporal consumption λ
- These aspects are less quantitatively important, so we'll focus on others to get intuition

Dynamic optimal pricing

- Static optimal price at $t: p_{t}{ }^{*}=p_{t}+\phi\left(m_{t}-p_{t}\right)=\phi m_{t}+(1-\phi) p_{t}$
- How likely is price set at time 0 to be still in effect after t periods?
- Let that probability be q_{t}
- For fixed-price contract, $q_{t}=1$ for life of contract, $q_{t}=0$ after expiration
- Dynamic optimal price to set at 0 is weighted average of expected future optimal prices, with weights determined by q :

$$
p=\sum_{t=0}^{\infty} q_{t} E_{0}\left(p_{t}^{*}\right) \times \frac{1}{\sum_{\tau=0}^{\infty} q_{\tau}}
$$

- Last denominator makes sure that weights add up to one

Dynamic optimal pricing

- Let $\omega_{t}=\frac{q_{t}}{\sum_{\tau=0}^{\infty} q_{\tau}}$
- Dynamic optimal price, then, is

$$
p=\sum_{t=0}^{\infty} \omega_{t} E_{0}\left(p_{t}^{*}\right)=\sum_{t=0}^{\infty} \omega_{t} E_{0}\left(\phi m_{t}+(1-\phi) p_{t}\right)
$$

- Optimal price is weighted average of expected future AD and expected future prices set by overall market
- More real rigidity \rightarrow smaller ϕ and more weight to market price, less to AD

Some common models

- Fixed-price contracts of length n :

$$
\omega_{t}=\frac{1}{n}
$$

- Calvo's model with fixed probability α of changing price:

$$
\begin{aligned}
& q_{t}=(1-\alpha)^{t} \\
& \omega_{t}=\frac{(1-\alpha)^{t}}{\sum_{\tau=0}^{\infty}(1-\alpha)^{\tau}}=\frac{(1-\alpha)^{t}}{1 /(1-(1-\alpha))}=\alpha(1-\alpha)^{t}
\end{aligned}
$$

Review and summary

- We began by considering the empirical importance of coordination failures due to real rigidities
- Not too important in standard model
- Much more important if we augment the model for customer markets or wage adjustment other than market clearing
- We considered how a firm in a dynamic environment would set prices taking into account that prices might be in place more than one period
- Set price at average optimal price over the future
- Weight the average by the probability that today's price will still be in place in each future period

Something different: A puzzle

Given that this is a quantitative class, a numerical puzzle seems appropriate:

What is the pattern in the following numerical sequence?

$$
8,5,4,9,1,7,6,10,3,2
$$

[Using the Internet to find the solution is cheating!]

What's next?

- We next turn to several models of price fixity that apply the principle of dynamic price setting
- Fischer's predetermined-price model (April 8)
- Taylor's fixed-price model (April 10)
- Calvo's probabilistic model of price setting (April 10)

