

Econ 314

Wednesday, April 22 Search and Matching Model of Unemployment

Readings: Romer, Sections 11.4 and 11.5

Class notes: 145 - 151

Today's Far Side offering

How we're all feeling at this time of year!

Context and overview

- We examine the **search/matching model** of the labor market that highlights **heterogeneity**
- Two-sided search involves **matching function** for unemployed workers and vacant jobs
- We derive the **job-finding rate** and **job-filling rate**
- Wage is set by Nash bargaining
- Equilibrium condition is derived with dynamic programming
- Equilibrium unemployment rate depends on:
 - Worker productivity
 - Efficiency of matching
 - Size of unemployment benefit

Model setup

- Workforce is of mass one, with share E employed and U unemployed (E + U = 1)
- Worker utility is: w(t) if employed, b if unemployed
- Firms' job pool is filled jobs (F) and vacant jobs (V)
 - A filled job produces output *y*
 - All jobs (vacant or filled) cost c < y
 - For filled jobs: $\Pi(t) = y w(t) c$
 - For vacant jobs: $\Pi(t) = -c$
 - Vacancies cost nothing to create, but *c* to maintain
- Discount rate = *r* for both workers and firms

Matching function

 $M\left[U(t),V(t)\right] = k\left[U(t)\right]^{1-\gamma}\left[V(t)\right]^{\gamma}$

- Flow from U to E ... and from V to F
- Constant returns?
 - Thick-market externalities \rightarrow increasing returns
 - Congestion externalities \rightarrow decreasing returns
 - We choose middle path of constant returns
- Reverse flow is when **job matches end**: constant rate λ
- Change in level of employment is

 $\dot{E}(t) = M[U(t),V(t)] - \lambda E(t)$

Rates of job finding and filling

- Job-finding rate: a(t) = M[U(t), V(t)] / U(t)
 - With CRTS, can write as

$$a(t) = m[\theta(t)] = k\theta^{\gamma}$$
, with $\theta(t) \equiv \frac{V(t)}{U(t)}$ and $m[\theta(t)] \equiv M(1,\theta(t))$

- θ is indicator of labor-market tightness: High $\theta \rightarrow$ more *V* relative to $U \rightarrow$ easier to find jobs
- Job-filling rate:

$$\alpha(t) = M \left[U(t), V(t) \right] / V(t) = \frac{m \left[\theta(t) \right]}{\theta(t)} = k \theta^{\gamma - 1}$$

• High $\theta \rightarrow$ harder to fill jobs because labor is scarce

Nash bargaining

- No "equilibrium wage" because each worker/job is its own market
- Nash bargaining sets wage to divide up the gains to workers and firms from making a match: Share ϕ to workers and (1ϕ) to firms
- Value of ϕ depends on institutions in the economy, market conditions, etc.
- What are the **gains to each party** from the match?
 - Workers: Difference in expected lifetime utility of E vs. U
 - Firms: Difference in expected lifetime profit of F vs. V
- Use dynamic programming to model V_E , V_U , V_F , V_V

Applying dynamic programming

- For a worker: $rV_{E}(t) = w(t) - \lambda \left[V_{E}(t) - V_{U}(t) \right]$ $rV_{U}(t) = b + a(t) \left[V_{E}(t) - V_{U}(t) \right]$
- For a firm:

$$rV_{F}(t) = \left[y - w(t) - c\right] - \lambda \left[V_{F}(t) - V_{V}(t)\right]$$
$$rV_{V}(t) = -c + \alpha(t) \left[V_{F}(t) - V_{V}(t)\right]$$

• Romer includes change in V but that will be zero in steady state

Steady-state equilibrium conditions

- *a* and α are constant values to be determined
- *E* is constant: $\dot{E}(t) = [U(t)]^{1-\gamma} [V(t)]^{\gamma} \lambda E(t) = 0$
- Since vacancies are costless to create, $V_V = 0$
- Nash bargaining solution: Let total gains from match = *X*
 - Workers' gain = $V_E V_U = \phi X$
 - Firms' gain = $V_F V_V = (1 \phi)X$

$$X = \frac{V_E(t) - V_U(t)}{\phi} = \frac{V_F(t) - V_V(t)}{1 - \phi}$$
$$V_E(t) - V_U(t) = \frac{\phi}{1 - \phi} \left[V_F(t) - V_V(t) \right]$$

Solving for wage

- Details are in class notes, pages 148 and 149
- Wage: $\frac{w-b}{a+\lambda+r} = \frac{\phi}{1-\phi} \frac{y-w}{\alpha+\lambda+r},$ $w = b + \frac{(a+\lambda+r)\phi}{\phi a+(1-\phi)\alpha+\lambda+r}(y-b)$
- Benchmark example: b = 0, $a = \alpha$, and $\phi = \frac{1}{2}$

$$w = \frac{\left(a + \lambda + r\right)\frac{1}{2}}{a + \lambda + r} y = \frac{1}{2}y$$

• Higher ϕ , *b*, or *a*, or lower α means that workers get larger share of gains

Solving for equilibrium a and α

• Finding *a*: $\dot{E} = 0 \Rightarrow M[U,V] \equiv aU \equiv a(1-E) = \lambda E$

$$a = \frac{\lambda E}{1 - E} = a(E)$$
, which is increasing in E

• Finding α : $\lambda E = M(U,V) = kU^{1-\gamma}V^{\gamma} = k(1-E)^{1-\gamma}V^{\gamma}$ $V = k^{-\frac{1}{\gamma}} (\lambda E)^{\frac{1}{\gamma}} (1-E)^{\frac{\gamma-1}{\gamma}}$ $\alpha = M/V = k^{\frac{1}{\gamma}} (\lambda E)^{\frac{\gamma-1}{\gamma}} (1-E)^{\frac{1-\gamma}{\gamma}}$ $\alpha = \alpha(E)$ is decreasing in E because $\gamma < 1$

Solving for equilibrium

- Cost of creating vacancy = 0
- Value of creating vacancy must also = 0 in equilibrium

$$rV_{V} = -c + \alpha \left[V_{F} - V_{V} \right]$$
$$= -c + \alpha \frac{y - w}{\alpha + \lambda + r}$$
$$= -c + \frac{(1 - \phi)\alpha}{\phi a + (1 - \phi)\alpha + \lambda + r} (y - b) = 0$$

The rV_V function

$$rV_{V} = -c + \frac{(1-\phi)\alpha(E^{*})}{\phi a(E^{*}) + (1-\phi)\alpha(E^{*}) + \lambda + r}(y-b) = 0$$

- Implicitly defines equilibrium employment E^*
- $E = 1 \rightarrow$ no unemployment $\rightarrow \alpha = 0$ and $rV_V = -c$
 - Value of vacancy is perpetual cost of maintaining it because job will never be filled
- $E = 0 \rightarrow a = 0$ and $\alpha \rightarrow \infty \rightarrow big$ fraction $= 1 \rightarrow rV_V = y b c$
- Graph on next page

Determining equilibrium employment

• rV_V curve has shape shown

• Equilibrium E is at E^*

- Effects of parameters:
 - $y \uparrow \rightarrow$ curve $\uparrow \rightarrow E^* \uparrow$
 - $k^{\uparrow} \rightarrow \text{curve}^{\uparrow} \rightarrow \rightarrow E^{*\uparrow}$
 - $b\uparrow \rightarrow$ curve $\downarrow \rightarrow E^* \downarrow$
 - $\Delta \phi$ is complicated

Applications

- Sectoral shifts (industry or geography) make it harder to make matches $\rightarrow k$ falls and unemployment increases
- Active labor-market policies may improve job matching $\rightarrow k$ increases and unemployment falls
 - Successful in Sweden, not so much in United States
- Caveat to the model: We are not accounting for **quality of job matches**; high-quality matches might raise utility and productivity

Empirical case study of natural rate

- US vs. Europe 1970 2000
- Why the changes?
- No single, simple explanation
 - Employment protection
 - Collective bargaining
 - Unemployment benefits
 - Tax rates
 - Wage flexibility
 - Labor-market flexibility

Review and summary

- Matching workers and jobs is costly
- We can model this in a Nash bargaining and dynamic programming model
- Better matching, higher productivity, and lower unemployment benefits lead to lower steady-state unemployment rate
 - More dynamic structural changes in economy make matching harder
 - Successful active labor-market policies can make matching easier
- Natural unemployment rate in Europe and U.S. diverged between 1970 and 2000, with European rates becoming very high

I

Another bad economist joke ...

"Let us remember the unfortunate econometrician who, in one of the major functions of his system, had to use a proxy for risk and a dummy for sex."

-- Fritz Machlup

-- Taken from Jeff Thredgold, On the One Hand: The Economist's Joke Book

What's next?

- This concludes our discussion of unemployment
- The remaining three classes focus on business **investment** decisions
 - April 24: The nature of capital and investment
 - April 27: Modeling adjustment costs
 - April 29: Dynamics of the *q* theory of investment