
Econ 314

Friday, April 10

Taylor and Calvo Models of Price Adjustment

Reading: Romer’s Section 7.3 and 7.4

Coursebook: Chapter 12 (relevant sections)

Class notes: Pages 126 - 129



Today’s Far Side offering

My calendar has a lot less on it these 
days, but it’s not quite this boring!
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Context and overview

• Fischer’s predetermined-price model showed that monetary policy 

could help stabilize economy even with rational expectations

• Taylor’s fixed-price model also has two-period overlapping contracts, 

but same price must be set for both periods

• Dynamics are more complex

• Unexpected monetary shocks have long-lasting effects on output, dying away 

slowly

• Calvo’s probabilistic price adjustment model is simpler to solve, has 

implications that seem realistic, and is now most commonly used 
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What are the costs of price adjustment

• If  costs relate to how often prices are set, Fischer model is 
appropriate: two-period contracts avoids frequent price setting
• Example: setting wages in union contracts with possibility of  damaging 

strike if  negotiations break down

• If  costs relate to how often prices change, then Taylor model is 
more appropriate: two-period contracts with same price avoids 
menu costs

• Taylor framework: Same price for both periods
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Pricing dynamics in Taylor model

• Different information assumption: Agents know mt before setting xt

• In terms of  dynamic pricing model:                    and  

• Optimal price setting: 
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Substituting …

• Optimal price for each period is again

• Substituting gives   

• Let mt be a random walk with white-noise shock ut:

• Leads to solution

• Second-order difference equation in x, plus expectation
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Intuition of solution
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• Key difference from Fischer model: xt competes with both xt – 1 

and xt + 1

• Dynamics will be both forward-looking and backward-looking

• AD shock at t = 1: x1 will not fully adjust to compete with x0

• x2 will not fully adjust to compete with x1; x3 will not fully adjust to 
compete with x2; and so on



Long-lasting effects of AD shocks

• Unlike Fischer model, real effects of  AD shock last longer than 
the longest contract

• Formal solution:

• No real rigidity   = 1 and  = 0  immediate adjustment to u

• More real rigidity  smaller , larger  and more persistence in y

• Taylor model implies that real effects of  AD shocks have long tails, 
dying out exponentially over time
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Calvo model of probabilistic price adjustment

• No fixed-length contracts

• Randomly selected fraction  of firms reset prices each period; 
others keep previous price

• Those setting prices set xt by similar rule as in Taylor model

• Price is weighted average of  those changing and those not:

• The simplicity of  this equation is what makes this model easy
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Setting xt

• Romer brings back discount factor  because of  possible long 

duration of  prices

• Probability that today’s price lasts t periods:

• Weights now reflect :

• Denominator is                                                 so

• Optimal price to set is    
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Solution

• Details are in Romer and on pp 128-129 of  notes

• Substitution gives
• Today’s dynamic optimal price to set is weighted average between today’s 

static optimal p and next period’s dynamic optimal x

• Higher  or lower  increases weight attached to current period

• Putting this in terms of  the inflation rate, 

• Substituting and algebra give us 
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New Keynesian Phillips curve

• Can be thought of  as Phillips curve or SRAS curve

• so inflation is increasing in output

• If    1, then expected inflation leads to one-for-one increase in 

actual inflation

• Note that this is forward-looking inflation expectation, not backward

• This is different from contract models that had

• Otherwise similar to Lucas, Friedman-Phelps Phillips curve, and 

contract models:  y > 0 when p > E(p)
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State-dependent pricing

• Romer discusses two models of  state-dependent pricing in Section 
7.5

• Decision to change price depends on current p vs. p* rather than fixed 
timing or random chance
• Firms whose price is far from current optimal price are more likely to adjust

• Perhaps more realistic, but definitely analytically more difficult

• We don’t have time to discuss in detail
• Caplin-Spulber model describes world on ongoing, smooth inflation

• Danziger-Golosov-Lucas model has richer set of  shocks
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Review and summary

• In Taylor fixed-price model, firms set same price for both periods 

of  contract

• Unanticipated AD shocks have real effects that die away slowly

• Correspondingly, price adjustment is gradual

• In Calvo model, a share  of  (randomly selected) adjust price each 

period

• Leads to new Keynesian Phillips curve with inflation depending on output 

and expected future inflation

• State-dependent pricing models allow the decision to adjust price 

to depend on how far price is from optimal price 
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Know your professor?

Which one of  the following statements is true?

a. I played in a rock band in high school.

b. I have webbed toes.

c. My wife was 14 when we started dating.

d. I have performed in both New York’s Macy’s Thanksgiving Parade and 
Pasadena’s Tournament of  Roses Parade.

e. My first car had 3 cylinders.

f. All of  the above are true.
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What’s next?

• We now have several models of  dynamic price-setting with 
predictions about effects of  AD shocks on output and prices

• In the next class (April 13) we consider the phenomenon of  
inflation inertia, which is not well explained by any of  these 
models

• We will introduce two variations on the Calvo model that can 
explain why inflation has inertia
• Christiano, Eichenbaum, and Evans

• Mankiw and Reis

• We will also briefly discuss new Keynesian DSGE models
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