In the R\&D model of Romer's Chapter 3,
$\frac{\dot{g}_{K}(t)}{g_{K}(t)}=(1-\alpha)\left(g_{A}(t)+n-g_{K}(t)\right)$ and
$\frac{\dot{g}_{A}(t)}{g_{A}(t)}=\beta g_{K}(t)+\gamma n+(\theta-1) g_{A}(t)$.

This means that $\dot{g}_{K}(t)=0$ when $g_{K}(t)=g_{A}(t)+n$, which is an upward-sloping line with slope $=1$ and intercept $=n$ (with g_{A} on the horizontal axis), and that $\dot{g}_{A}(t)=0$ when $g_{K}(t)=-\frac{\gamma n}{\beta}+\frac{1-\theta}{\beta} g_{A}(t)$, which has positive slope $\frac{1-\theta}{\beta}$ and intercept $-\frac{\gamma n}{\beta}$.

1. Is $\dot{g}_{K}>0$ above or below the $\dot{g}_{K}=0$ line? Show appropriate arrows in the two regions.
2. Is $\dot{g}_{A}>0$ above or below the $\dot{g}_{A}=0$ line? Show appropriate arrows in the two regions.
3. If $\beta+\theta<1$ and $n>0$, show how the two curves relate to one another and the directions of motion (for both g_{K} and g_{A}) in the relevant regions.
4. Repeat $\# 3$ for $\beta+\theta=1$ and $\beta+\theta>1$, assuming again that $n>0$.
