In the R&D model of Romer's Chapter 3,

$$\frac{\dot{g}_K(t)}{g_K(t)} = (1 - \alpha)(g_A(t) + n - g_K(t)) \text{ and}$$

$$\frac{\dot{g}_{A}(t)}{g_{A}(t)} = \beta g_{K}(t) + \gamma n + (\theta - 1)g_{A}(t).$$

This means that $\dot{g}_K(t) = 0$ when $g_K(t) = g_A(t) + n$, which is an upward-sloping line with slope = 1 and intercept = n (with g_A on the horizontal axis), and that $\dot{g}_A(t) = 0$ when $g_K(t) = -\frac{\gamma n}{\beta} + \frac{1-\theta}{\beta}g_A(t)$, which has positive slope $\frac{1-\theta}{\beta}$ and intercept $-\frac{\gamma n}{\beta}$.

- 1. Is $\dot{g}_K > 0$ above or below the $\dot{g}_K = 0$ line? Show appropriate arrows in the two regions.
- 2. Is $\dot{g}_A > 0$ above or below the $\dot{g}_A = 0$ line? Show appropriate arrows in the two regions.
- 3. If $\beta + \theta < 1$ and n > 0, show how the two curves relate to one another and the directions of motion (for both g_K and g_A) in the relevant regions.
- 4. Repeat #3 for $\beta + \theta = 1$ and $\beta + \theta > 1$, assuming again that n > 0.