## Daily Problem \#4

Consider a discrete-time model of a household's budget. Its stock of capital at the end of period 0 (beginning of period 1 ) is $K_{0}$. During period 1 , the household receives wage income $W_{1}$ (in real terms) and spends $C_{1}$ on consumption goods (again, in terms of goods, not dollars). Each unit of capital that it holds at the beginning of the period bears a net return during period 1 of $r_{1}$ (and you may assume there is no depreciation).

1. How much capital $K_{1}$ does the household have at the end of period 1 as a function of $K_{0}$, $W_{1}, C_{1}$, and $r_{1}$ ?
2. Apply the same formula to period 2 (with income and consumption of $W_{2}$ and $C_{2}$ and a net rate of return of $r_{2}$ ) to calculate $K_{2}$ in terms of $K_{1}, W_{2}, C_{2}$, and $r_{2}$.
3. Substitute your formula for $K_{1}$ from question 1 into the formula in question 2 to get an expression for $K_{2}$ in terms of the two $W$ terms, the two $C$ terms, the rate of return, and initial capital $K_{0}$. (You may assume that the rate of return is constant, so $r_{1}=r_{2}=r$.)
4. Suppose that a household is "born" at the beginning of period 1 with no initial wealth ( $K_{0}$ $=0$ ) and "dies" at the end of period 2, leaving no wealth behind ( $K_{2}=0$ ). What is the household's budget constraint linking consumption and wage income in the two periods?
5. If we were to draw this budget constraint in terms of $C_{1}$ (on the horizontal axis) and $C_{2}$ (on the vertical axis), what would be its slope and vertical intercept?
