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A. Topics and Tools 

Economists recognized the existence of cyclical fluctuations in economic activity 

long before modern macroeconomic measurements such as GDP and the unemploy-

ment rate were collected and published. Indeed, one macroeconomics text cites a ref-

erence to something analogous to a business cycle in biblical sources! During the latter 

half of the 19th century, economists began to note recurrent booms and depressions of 

the industrial economy in which each “trade cycle” resembled the others in many re-

spects. Business-cycle analysis began in earnest in the 1890s. An early comprehensive 

compilation of business-cycle statistics was Wesley Clair Mitchell (1913).
1

 Dennis 

Robertson (1915) and A.C. Pigou (1933) were among the leading economists who de-

veloped theories to try to explain Mitchell’s empirical business-cycle observations. 

It was the depth and persistence of the Great Depression of the 1930s that brought 

business-cycle analysis to the center of economists’ attention. Existing theories were 

inadequate to explain a decline in real output of over 30 percent and an unemployment 

rate that rose to 25 percent and remained in double digits for a decade. 

John Maynard Keynes (1936) transformed the analysis of business cycles and ef-

fectively founded the discipline of macroeconomics with his General Theory of Employ-

ment, Interest and Money, which modeled the behavior of an economy in severe depres-

sion. Keynes focused the attention of economists on the role of deficient demand in 

cyclical downturns. He believed that investment, operating through its effect on aggre-

gate demand, was the primary engine driving the business cycle. Although developed 

to explain a depressed economy, Keynes’s model remained the dominant macroeco-

nomic paradigm through the early post-World-War-II period. 

The dominance of Keynes’s ideas began to wane in the 1970s when the combina-

tion of inflation and oil-shock-induced stagnation in production—stagflation—pre-

sented a situation that did not fit the traditional Keynesian theory. Stagflation dis-

rupted the empirical status quo of macroeconomics at the same time that a desire to 

understand the microeconomic foundations of macro theory created new theoretical 

challenges. Macroeconomists tried to understand the new events by building models 

of the business cycle based on rigorously specified sets of microeconomic assumptions 

such as utility maximization. The new classical and new Keynesian theories that grew 

out of this first generation of “microfoundations" models are the subject matter of an 

upcoming section of this course. Robert Lucas developed a model with imperfect in-

formation and market clearing that seemed to explain some of the more prominent 

                                                      
1

The third part of this work was published separately in 1941 as Business Cycles and their Causes, 

which was reprinted in a paperback edition by Porcupine Press in 1989. 
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business-cycle features. “New Keynesian” macroeconomists responded with an alter-

native set of theoretical explanations based on sticky wages or prices. Later new 

Keynesians emphasized the presence of coordination failures that lead to inefficiencies 

in aggregate equilibrium. 

In this chapter, the focus is on “real business cycle” (RBC) models. These models 

attempt to explain the business cycle entirely within the framework of efficient, com-

petitive market equilibrium. They are a direct extension of the Ramsey growth model. 

However, unlike the Ramsey model, the rate of technological progress is assumed to 

vary over time in response to shocks, which leads to fluctuations in the growth rate. In 

the initial literature their builders “calibrated” RBC models by choosing values for 

their behavioral parameters (such things as  and  from the Ramsey-model utility 

function) and then comparing the correlations produced by repeated model simula-

tions with the corresponding correlations in real-world macroeconomic data. More 

recent advancements in methodology have allowed some parameters of these models 

to be estimated in the simulation process. 

RBC models recommend very different business-cycle policies than Keynesian 

models. Keynesian models emphasize the inefficiencies of cyclical fluctuations and es-

pecially the waste resulting from unemployed resources during recessions; RBC mod-

els claim that cyclical fluctuations may be efficient responses of the economy to una-

voidable variations in the rate of technological progress. Thus, RBC advocates argue 

that government action to stabilize the economy through aggregate demand is inap-

propriate and useless. 

As with any other theory, the major issue for the real-business-cycle model is 

whether it is capable of explaining the pattern of movements that characterize the mod-

ern business cycle. Opinions on the empirical performance of RBC models vary; these 

will be examined in detail in a later chapter.  
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B. Walrasian vs. Keynesian Explanations of Business 

Cycles 

Why do we have multiple theories of business cycles?  

Since basic forms of the currently popular theories have been around for at least 

thirty years, it might seem that by now the empirical evidence on business cycles ought 

to have pointed to one of the models as the most relevant. There are several reasons 

why it is difficult to achieve empirical consensus. First, recall that all models are ex-

treme simplifications that are intended to illustrate a very limited set of macroeco-

nomic patterns or phenomena. Every model has other phenomena that it cannot ex-

plain, and that detractors will use to discredit it. As a famous economist once said, 

“All models are wrong, but some are useful.”  

Another important reason is that the various models that we shall study during the 

remainder of the semester are, in many respects, observationally equivalent. This means 

that similar outcomes are consistent with several theories, so observing these outcomes 

cannot be used to reject one theory in favor of the others. It does not mean, however, 

that the two theories are necessarily equivalent. Even theories that have very different 

implications for the optimal design of economic policy may share some of the same 

predictions about observable relationships among variables. In the absence of con-

trolled experiments, we may find it very difficult to choose between theories based on 

slowly accumulating macroeconomic evidence. 

A third reason for the multiplicity of models is that empirical evidence itself is 

subject to alternative methods of measurement and interpretation. An excellent exam-

ple of this is the cyclical behavior of prices. Competing theories have different predic-

tions for the correlation of price changes with output changes over the business cycle, 

so it might seem like one could easily choose between the theories by simply observing 

this correlation. But empirical studies can be found to support either procyclical or 

countercyclical price movements; the outcome depends on what time period and coun-

try is studied and on the particular method used to assess correlation. To take one 

among several measurement issues, it matters greatly whether one considers the cycli-

cal behavior of the price level or the inflation rate.
2

 There is enough disagreement in 

the evidence on this issue that proponents of both classes of models can claim that the 

cyclical behavior of prices supports their viewpoint. Similarly, authors using different 

                                                      
2

 See, for example, Lines 37 and 41 of Table 2 in Stock and Watson (1999), which show that 

cyclical movements in the level of the GDP price deflator are negatively correlated with output 

movements, while the inflation rate of the deflator is positively correlated with output. 
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methods and data sets have found real wages to be procyclical, countercyclical, and 

acyclical. Each of these possibilities is supported by one or more business-cycle mod-

els. 

Another reason for disagreement is that some macroeconomists seem to have a 

near-religious belief in the validity of particular theories. Under these circumstances, 

evidence that would falsify a model in the eyes of most impartial scientists may be 

insufficient to dissuade a “true believer.” Unfortunately, as noted just above, empirical 

evidence is rarely unanimous or conclusive, since proper measurement of variables 

and exact specification of economic relationships are nearly always open to question. 

Thus, the macroeconomic debate over the nature and causes of business cycles seems 

certain to continue for the foreseeable future. 

Classification of business-cycle models 

Early business-cycle research was dominated by theories of endogenous cycles, in 

which the economy follows a cyclical trajectory even in the absence of external shocks. 

In these theories, a boom lays the seeds for its own demise and for the ensuing slump.
3

 

These endogenous-cycle models have fallen out of favor in recent decades and have 

largely been superseded by impulse-propagation models in which business cycles result 

from the response of the economy to exogenous shocks.
4

 Our analysis will focus ex-

clusively on the latter class of models. 

There are many individual theories within the class of impulse-propagation models 

that vary in a number of ways. One basic taxonomy is between  

 

 Theories that retain the Walrasian or neoclassical assumption that prices and 

wages are perfectly flexible and that supply equals demand in every market at 

all times, and  

 Keynesian theories featuring markets that do not clear because of imperfect ad-

justment of wages and prices.  

 

You may recall from basic microeconomic theory that the Walrasian equilibrium 

model is based historically on the work of Leon Walras in the 19th century. Walras 

advanced the idea that markets behave as though there is an auctioneer who calls out 

a range of possible prices and gets demand and supply information at each price. This 

Walrasian auctioneer then determines the price that would balance supply with demand 

and establishes the market price at this level before trading begins. All trading occurs 

at the equilibrium price in a Walrasian market. 

                                                      
3

 Examples of endogenous-cycle models from the early literature include Goodwin (1948) and 

Hicks (1950). 
4

 Much of this history is discussed in detail in Chatterjee (2000). 
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Of course, no one pretends that a Walrasian auctioneer exists in common real-

world markets. However, actual markets may behave in a similar manner if any con-

dition of excess supply or excess demand quickly leads to a price change that elimi-

nates the disequilibrium. Prices are very flexible in some markets, so (for them) the 

Walrasian assumption is probably a reasonable one. For example, few would claim 

that prices on the New York Stock Exchange remain out of equilibrium for more than 

a minute or two—or, with modern computer-based trading algorithms, for more than 

a millisecond or two. At the other extreme, prices in labor and housing markets where 

products are highly differentiated and information is costly may be a great deal stickier 

and a condition of excess demand or supply may persist in a period we call the “short 

run.” 

Many macroeconomists believe that market clearing is a reasonable assumption 

over a medium-to-long time horizon, but that prices are likely to exhibit some sticki-

ness in the short run. This has led to a collection of “new Keynesian” models that we 

shall study in Romer’s Chapters 6 and 7, with imperfect price flexibility in the short 

run and Walrasian assumptions in the long run. However, even among those conced-

ing that price rigidity is important disagreement arises (1) over how long, in terms of 

actual time, the relevant short run and long run are and (2) over how much importance 

should be attached to the short run vs. the longer run in deciding economic policy.  

Macroeconomists divide broadly into two camps. Neoclassical macroeconomists, 

sometimes called by the 1950s-vintage name monetarists, generally view Walrasian 

market clearing as an appropriate paradigm for analysis. They argue that prices are 

relatively flexible and/or that long-run considerations are more important than short-

run considerations. On the other side of the debate, Keynesians emphasize rigidities 

and coordination failures that prevent markets from clearing. They often place greater 

importance on short-run outcomes than on long-run effects. We examine one major 

branch of the neoclassical view here then turn to the basic outlines of the Keynesian 

model in future chapters. 

Within the neoclassical camp, there are two main kinds of models. Following the 

work of Robert Lucas, Thomas Sargent, Neil Wallace, and others in the early 1970s, 

the first collection of models was based on continuous market clearing in an environ-

ment where agents have imperfect information. Romer discusses these models in the last 

section of Chapter 6. 

The other broad set of neoclassical models follows Nobel laureates Finn Kydland 

and Edward Prescott, who developed the real-business-cycle (RBC) model in the 1980s.
5

 

Unlike the imperfect-information models, the pure RBC model introduces no imper-

fections whatsoever to the system of perfect competition, perfect information, and in-

stantaneous market clearing. The RBC model is basically a stochastic growth model, 

                                                      
5

 Kydland and Prescott (1982) is usually cited as the seminal paper in the RBC literature. 
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extending our full-employment growth models to allow for random fluctuations in the 

rate of growth of productivity and natural output.  

After the Great Depression, the conventional wisdom in macroeconomics was that 

the business cycle was a non-Walrasian phenomenon. Under Walrasian assumptions, 

the level of output is always at the natural level of output—the level that is consistent 

with full employment of labor and full utilization of capital, given the state of available 

technology. Walrasian models explain business cycles as fluctuations in the natural 

level of output, rather than fluctuations of actual production around the natural level. 

The traditional view was that technological progress and changes in the labor force 

and capital stock were usually smooth, trend-like movements like those modeled in 

economic growth theory. If the determinants of natural output move smoothly rather 

than cyclically then the Walrasian model cannot explain business cycles.  

Two insights of the RBC modelers have enabled them to construct a Walrasian 

competitive equilibrium model with business cycles. First, they recognized that tech-

nological progress does not necessarily occur smoothly but may instead have ebbs and 

flows, perhaps even periods of regress. Second, RBC modelers devised endogenous 

propagation mechanisms that could cause changes in the rate of technological progress 

to affect other variables in a way that leads to co-movements that resemble those we 

observe in business cycles. The central question that RBC proponents’ models have 

attempted to answer affirmatively is: Can observed realistic movements of variables 

over the business cycle be explained without stepping outside the competitive Walrasian 

model? They claim that the ability to replicate real-life co-movements among major 

macroeconomic variables using a model that is purely Walrasian means that Keynes-

ian concepts of wage and price stickiness are not essential to explain economic fluctu-

ations. 

Despite the large amount of attention that RBC models received in the 1980s and 

1990s, most macroeconomists remain skeptical. Since the Great Depression, the 

Keynesian view has dominated macroeconomics: recessions are viewed as reductions 

in output below the natural level, not declines in the natural level itself. Proponents of 

RBC models were fighting an uphill battle for acceptance of their ideas. Because of 

this, much of the literature on real business cycles carries a tone of persuasion that 

might seem unusual to readers (such as you) who learn about RBC models before learn-

ing about the much-longer-established Keynesian tradition of business-cycle analysis.  

The intellectual combat between RBC modelers and Keynesians obscures a cru-

cially important point: it is entirely plausible that business-cycle fluctuations reflect 

both uneven movements in natural output and movements in actual output away from 

the natural level. Even if RBC models are capable of reproducing business-cycle move-

ments, this does not mean that the sources of fluctuations emphasized by these models 

are the only source of business cycles. Most macroeconomists agree that the oil shocks 

of the 1970s had a substantial macroeconomic impact, as predicted by RBC models 
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and verified consistently by much macroeconomic research. However, most also be-

lieve that monetary and fiscal policy changes and other shifts in aggregate demand 

have a strong influence on short-run economic activity, as in Keynesian models. 

C. Understanding Romer’s Chapter 5 

Romer’s baseline model 

Many of the components of the model that Romer lays out in section 5.3 should 

be quite familiar, although Romer sets the RBC model in discrete rather than contin-

uous time.
6

 The Cobb-Douglas production function in (5.1) should be very familiar by 

now. The capital-stock adjustment equation (5.2) is a standard discrete-time formula-

tion that includes government spending. However, this equation slips in an assump-

tion that turns out to be important later on. In equation (5.2), investment that takes 

place in period t does not become productive until period t + 1. To see this, note that 

an increase in It affects 
1tK 
 and therefore 

1tY 
, not Kt and Yt.

7

  

Equation (5.3) equates the real wage w to the marginal product of labor and (5.4) 

does the same for the interest rate and the marginal product of capital. We will study 

the investment decision in greater detail later in the course and at that time the analyt-

ical basis of (5.4) will be made clearer. For now, we develop an intuitive argument for 

why this equation represents the optimal amount of capital to be used in production.  

Labor input is always “rented” by the firm—it cannot own workers—so the labor 

market is a market for labor services. However, in the real world most firms own a 

                                                      
6

 Many of the models developed in the research literature are continuous-time; the conclusions 

from these models are similar to Romer’s. The analysis of continuous-time random processes 

is difficult to explain intuitively, so discrete time is an easier choice for textbook exposition. 

Moreover, the implementation of models in numerical simulations must also be done with 

discrete time intervals, so even models developed in continuous time must be estimated and 

simulated in discrete-time form. 
7

 This equation could alternatively be specified as Kt = Kt-1 + It  Kt-1, which would make period 

t investment part of the productive capital stock in period t. Since investment presumably oc-

curs throughout the period, neither assumption seems strictly correct. If our period is a year, 

January investment may be used in production throughout the current year, but December 

investment is not. One of the disadvantages of using discrete-time analysis is that one must 

make arbitrary decisions of this kind. Romer’s choice is probably the better one, since much of 

investment is in large projects (such as a new factory) that require many months of expenditures 

before entering the productive capital stock. Some capital projects may even require investment 

over two or more years before they can be used. 
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large share of the capital goods whose services they use in production. Owning capital 

goods ties up some of the firm’s financial resources, which could otherwise be used in 

other ways. For example, instead of owning a dollar’s worth of physical capital, the 

firm could own a one-dollar bond that would pay rt per year in (real) interest. 

 For the firm to be content to own and use a marginal unit of capital instead of 

trading it for an equivalent amount of bonds, the capital must earn a rate of return 

equal to the interest on the bond. The right-hand side of Romer’s equation (5.4) is the 

marginal product of capital less depreciation, which measures the net rate of return on 

the marginal unit of capital. Thus, equation (5.4) expresses the equilibrium condition 

for the amount of capital owned by the firm as the equality between marginal returns 

on two alternative uses of resources: the rate of return on a bond (the interest rate) and 

the marginal rate of return on capital. 

The utility function in (5.5) differs in one important way from the ones we used in 

our growth models: it includes leisure as well as consumption. In growth theory, we 

suppressed the role of leisure in the utility function by assuming that working time was 

fixed independently of the consumption choice. We could defend that assumption by 

noting that long-run changes in per-capita labor supply (hours worked) seem to occur 

slowly and smoothly and can thus be captured by setting n to be the growth rate of 

hours worked rather than just the population growth rate. In contrast to growth theory, 

movements in employment (and unemployment) are central to the analysis of business 

cycles. If these movements are to be explained in a Walrasian framework where de-

mand equals supply, there must be fluctuations in the quantity of labor supplied. To 

model labor supply, we take account of the labor-leisure tradeoff and so we enter lei-

sure into the utility function. Leisure and consumption enter additively in (5.7), which 

implies that their marginal utilities are independent of one another (i.e., the second 

cross partial derivatives are zero). This assumption makes the analysis much easier. 

The logarithmic form of the utility function in (5.7) deserves special attention as 

well. We encountered the combination of logarithmic utility function and Cobb-Doug-

las production function in section 2.10, where Romer uses it to simplify the dynamics 

of the Diamond overlapping-generations growth model. Log utility is the special case 

of the CRRA utility function where  = 1. This case has a very useful property: saving 

is independent of interest rates because the wealth (income) and substitution effects of 

a change in r exactly offset one another.  

Can we defend the use of this special utility function on empirical grounds or is it 

merely a way of simplifying the analysis? It is very difficult (impossible?) to estimate 

underlying utility function parameters such as  from economic data. Some evidence 

in support of  = 1 comes from the apparent absence of large effects of interest rates 

on saving. Ultimately, the relevance of the model and its parts must be tested by com-

parison with actual data. If the model is able to mimic the data satisfactorily, then 
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perhaps its assumptions (including log utility) are roughly congruent to actual behav-

ior. If not, then we must consider log utility alongside the model’s other assumptions 

as possible culprits. 

Introducing random shocks 

The biggest methodological difference between the RBC model and the growth 

models of Romer’s chapters 1 through 4 is that the RBC model is stochastic, meaning 

that it includes random elements. Without these random shocks the Ramsey model 

(and the RBC model based on it) converges to a balanced-growth path without cycles; 

it is the shocks that introduce cyclical behavior in the model.  

Two random variables are introduced: shocks to the growth of technology and 

shocks to government spending. The random disturbances enter Romer’s model in a 

rather complicated way. There are three “versions” of random variables for A and for 

G. The first version is the economic variable itself: A and G. The log of each of these 

variables is determined as the sum of a trend component and a deviation from trend. 

The deviation from trend is the second version of the random variable, which is then 

decomposed into two parts, one representing the tendency for past deviations to persist 

and the other measuring the new shock to the deviation, which is the lowest-level ran-

dom variable. 

The trend level of ln A is A gt , where A  is a constant and gt reflects the assump-

tion that the level of productivity fluctuates around a trend that is growing at rate g. 

(This is an example of a “trend-stationary” stochastic process.) Government spending 

is assumed to vary around a trend growth rate of g + n. That is the same as the growth 

rate of real output, so there is no long-run tendency for the share of output devoted to 

government spending to rise or fall. The trend level of ln G is ( ) .G g n t   

At any point in time, both productivity and government spending are subject to 

deviations above or below their trend levels. The deviation in A is A  and the deviation 

in G is G . Thus, combining the trend levels with the deviations, we get Romer’s equa-

tions (5.8) and (5.10), which are reproduced below: 

ln ,

ln ( ) .

t t

t t

A A gt A

G G n g t G

  

   
 

 Finally, we model the deviations themselves. The easiest way to model the devia-

tions would be as random disturbances that are totally independent over time. But if 

each period’s deviation from trend was independent of the ones before and after, then 

we would expect to see productivity and government spending chaotically jumping 

back and forth above and below their trend lines. This is not very realistic; evidence 
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suggests that both productivity and government spending tend to have sustained peri-

ods in which that are above (or below) their trends. We therefore choose to model the 

deviations as having some degree of persistence. 

The deviations from trend A  and G  are assumed to follow first-order autoregres-

sive processes as described by (5.9) and (5.11).
8

 The first term in these equations, 
1A tA   

and 
1G tG  , allows the previous period’s value of the deviation to carry over (positively 

or negatively) into the current period. If A and G are positive, which we always as-

sume, then a positive (negative) deviation from trend would tend on average to be 

followed by a succession of positive (negative) deviations, returning gradually to zero.  

The shocks A and G are white-noise random processes, meaning that they cannot 

be predicted ahead of time. Thus, when consumers form their consumption plans, they 

will use the expected value (zero) of the future shocks A and G rather than the un-

known actual values. 

If an important goal of a business-cycle model is to explain the persistence of mac-

roeconomic fluctuations, then starting out with persistent exogenous deviations could 

be viewed as cheating. It assumes exogenous persistence rather than explaining persistence 

endogenously. This is a major criticism of models such as the one Romer presents. By 

analyzing the model when A and G are zero and then when they are positive, we can 

determine how much of the persistence in business-cycle fluctuations is explained en-

dogenously by the model and how much is attributed to the persistence of shocks hit-

ting the economy.
9

 

Analysis of household behavior 

Romer examines the household maximization problem gradually by starting with 

one period, then moving to two periods, and eventually to more than two. People in 

this model make simultaneous substitution choices over two basic dimensions: present 

vs. future and leisure vs. consumption. In principle, even in a two-period model there 

is substitution between all six pair-wise combinations of these dimensions: present con-

                                                      
8

 Time-series processes of this kind are called “autoregressive” because the variable is a function 

of its own past values. “First-order” refers to the fact that only one lagged value appears in (5.9) 

and (5.11). 
9

 The two papers that originated the literature on real business cycles had more elaborate prop-

agation mechanisms than those in Romer’s version or in much of the subsequent literature. 

Kydland and Prescott (1982) assumed that investment projects require several periods to com-

plete (“time to build”), while Long and Plosser (1983) used an input-output structure where 

changes in demand take multiple periods to work their way through the purchasing of inputs 

to production. 



 

6 – 12 

sumption vs. future consumption, present leisure vs. future leisure, present consump-

tion vs. present leisure, future consumption vs. future leisure, present consumption vs. 

future leisure, and present leisure vs. future consumption. And in a model with more 

than two periods, there are multiple “futures.”  

We generally focus on just the first three of these. We will analyze three sets of 

first-order conditions to represent the equilibrium conditions corresponding to these 

three tradeoffs. The fourth tradeoff (future consumption vs. future leisure) is just the 

same as the third in that both relate to the contemporaneous choice between consump-

tion and leisure. The appropriate first-order conditions for the fifth and sixth tradeoffs 

can be shown to be redundant with our separable utility function: they are satisfied if 

the first four conditions are satisfied. 

The two-period model is sufficient to illustrate one of the most important features 

of RBC models: intertemporal labor substitution. Put very simply, the RBC model as-

serts that people will tend to allocate their labor effort over time so that they work more 

when the (real) wage rate is high and partake in more leisure at times when the wage 

is low. The same substitution mechanism also implies that high interest rates should 

motivate households to work more now since today’s wage is worth more relative to 

the present value of the future wage. Romer’s equation (5.21) shows formally how 

labor effort in the two periods is related to relative wage rates in the periods and the 

real interest rate. 

The substitution between present and future consumption in the RBC model is 

generally quite similar to that of the Ramsey and Diamond models. The analysis is in 

discrete time, like the Diamond model, but Romer chooses continuously compounded 

discounting as in the Ramsey model. The main new feature is the presence of uncer-

tainty about future variables due to the introduction of the random shocks. Since future 

values of shocks are unknown, any future-dated variables must be replaced by their 

expectations as of the present, which are denoted by the expectations operator Et[].  

Although the analysis is made more complicated by the presence of the expected 

value operator in the expression, you should recognize a variant of our old friend the 

intertemporal consumption-equilibrium (Euler) equation in equation (5.23). Once again, 

as in equation (2.20) in the Ramsey model and equation (2.48) in the Diamond model, 

households want a rising or falling consumption path depending on whether r >  or 

r < .
10

 

                                                      
10

This condition is only approximate in equation (5.23) because Romer uses the exponential 

(continuously compounded) form of discounting for utility, but the discrete-time 1/(1+r) form 

of interest accumulation. Thus, we end up with a mixture of exponentials and quotients. Note 

that for small values of , e  1/(1 + ), so once again the relationship (in expectation) be-

tween current and future consumption depends on something very like (1 + r)/(1 + ). 
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A new dimension of household equilibrium in this model is the (intratemporal) 

equilibrium between consumption and leisure. Since leisure and consumption are 

analogous to any pair of utility-yielding commodities, the ratio of their marginal utili-

ties should match the ratio of their prices at the point of utility-maximization. (Geo-

metrically, this is the condition for the indifference curve to be tangent to the budget 

line.) The relative price in this case is the real wage w, with the ratio of marginal utili-

ties contributing the other side of equation (5.26). 

Each of these three conditions will hold in every period or pair of periods: inter-

temporal labor supply decisions will satisfy a variant of equation (5.21) for every pair 

of periods, intertemporal consumption satisfies (5.23), and the contemporaneous 

tradeoff between consumption and leisure (labor) at each date must follow (5.26). 

Solving the model? 

 As Romer points out, this model is too complicated to be solved analytically. We 

can, however, establish intuitively or analytically some of the properties of a solution 

to the model. The model itself consists of the production function (5.1), the capital 

accumulation equation (5.2), the wage and interest rate marginal-product conditions 

(5.3) and (5.4), the population-growth equation (5.6), the specifications of the stochas-

tic evolution of technology and government spending (5.8) through (5.11), the three 

sets of household-equilibrium conditions that are discussed in the previous paragraph, 

and the identities c = C/N and l = L/N on page 197. Many of these equations are 

dynamic in nature: the capital-evolution equation, the equations of motion for A, G, 

and N, and the two sets of intertemporal-substitution conditions. The others hold at 

every moment of time. The endogenous variables whose paths are to be determined 

by these equations are Y, N, A, G, C, c, L, l, w, r, and K.
11

 

In principle, we could try to reduce these equations to a smaller set through sub-

stitution and use a phase diagram to try to explain the dynamics of the system. How-

ever, one cannot reduce the system easily to two variables to fit on a plane, so this 

method does not simplify the analysis enough to be illuminating. 

On a more fundamental level, what would a solution to this model look like? The 

solution of a model expresses each of the endogenous variables as a function of only 

exogenous and lagged variables. (This is sometimes called the reduced form of the 

model.) If all of the variables listed above are endogenous, what is left to be exogenous? 

Other than the time trend (which affects A and G), the only exogenous “driving” var-

iables in the system are the random shock terms A and G. Thus, a complete solution 

                                                      
11

Note that because the model is dynamic you cannot just count variables and equations. The 

household behavioral conditions are not independent of one another: if the condition for bal-

ance of ct and ct + 1 holds and the conditions for balance of l and c hold at both t and t + 1, then 

the resulting relationship between lt and lt + 1 will surely satisfy its condition as well. 
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to the model would express the time path of each of the endogenous variables as a 

function of the time paths of these shocks and of the time trend. Romer does not 

achieve or approximate such a solution in Chapter 5, but you will have the opportunity 

to solve the model through numerical simulation in a homework project. 

What we would learn from analyzing the solution (if we could find one) is the 

nature of the response of each variable to a one-unit shock to technology or to govern-

ment spending. Because of the complexity of the models, researchers usually perform 

these experiments through numerical simulation rather than by algebraic solution. 

First, the model is “calibrated” by assuming values for unknown parameters such as  

in the utility function and  in the production function. Next, random values are gen-

erated for the shock innovations () according to probability distributions that they 

have been assumed to follow. Then a computer program calculates the values of the 

variables of the model in each period given the shocks and adjusts prices (wages, in-

terest rates, etc.) until all markets are in balance.
12

  By repeating this simulation process 

many times for different sets of randomly generated disturbances, we can characterize 

the basic properties of the model: the correlations among variables at various leads and 

lags, relative variances of variables, and patterns of autocorrelation and persistence of 

individual variables. If these properties of the simulated model look like business cy-

cles, then the model is deemed to be capable of representing business-cycle behavior.
13

 

Romer’s “special case” 

 In section 5.5, Romer attempts an approximate solution to a special case of the 

model, where there is no government and where the depreciation rate is 100%. As 

Romer notes, these are not realistic conditions, but rather must be defended on the 

basis of convenience. He uses this simplified model as a base case then considers how 

the more general model might compare to it. 

 The principal effect of the simplification is that the saving rate is constant. His 

derivation of the saving rate in (5.33) is quite straightforward except, perhaps, for how 

he deals with expectations. In light of the discussion on page 200 of how one cannot 

separate out the expectation of a product (or quotient) of two random variables as the 

product (quotient) of their expectations, it may seem like Romer is cheating in equa-

tion (5.30) when he brings , Nt + 1, st, and Yt outside the expectation operator. How-

ever, none of these is random from the standpoint of the agent forming expectations. 

                                                      
12

 Note that the dynamics of this simulation are complex. Current decisions depend on expec-

tations of future values of the variables; future values of the variables depend on current deci-

sions. One cannot in general simply step through time recursively to solve these models but 

must solve all periods of the simulation “at once.” 
13

 Judd (1998) provides an excellent introduction to the numerical analysis methods used to 

solve dynamic economic models such as RBC models. 



 

6 – 15 

Because the population increases in a totally predictable way, Nt + 1 is known with cer-

tainty. The other variables are known (or being determined by the consumer) at date t 

and the  parameter is assumed known. Thus, filling in a step that Romer omits, 
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The next step is to note that if we have a constant saving rate, as Romer assumes in 

this section, then st + 1 = st, which is known. Thus, we can eliminate the last expectation 

from the right-hand side of (5.31) and derive the simple expression (5.33) for the saving 

rate. 

 The remaining equations on pages 203 and 204 analyze the labor-supply decision 

by plugging in the Cobb-Douglas formula for the marginal product of labor (the equa-

tion in text between (5.34) and (5.35)) and solving. The result is that under the simpli-

fications we have introduced, all of the substitution and income effects of changes in 

wages and interest rates associated with a productivity shock exactly balance, leaving 

labor supply unaffected by A. Although this is a remarkable and seemingly counterin-

tuitive result, aggregate labor supply does tend to be remarkably stable through various 

shocks to the economy.
14

 

 In the next section, Romer describes the dynamic behavior of real output in this 

simplified model. As you might expect, assuming 100% depreciation eliminates a lot 

of the complicated dynamics of the model. If capital lives many periods, then high 

investment during a boom will affect productive capacity for many ensuing years. By 

assuming complete depreciation, that cannot happen here. However, the model still 

has some degree of endogenous persistence due to the one-period lag in installation of 

capital.
15

 

                                                      
14

This assumption is particularly problematic. As discussed in Mankiw (1989) and elsewhere in 

the literature, one of the major problems for RBC models is explaining why labor input is so 

sensitive to changes in A if the labor market clears continuously. If all workers are on their 

labor-supply curves, then something must be inducing them to work a lot more in booms and 

a lot less in slumps. Presumably the wage, in response to productivity fluctuations, is that some-

thing, but if we assume that labor supply is insensitive to wage changes, then we cripple that 

mechanism. 
15

See the discussion in the previous section about the choice of whether current-period invest-

ment becomes part of the capital stock in the current period or in the next period. 
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 In equation (5.40), Romer defines the new variable Y  to be the deviation of log 

output from its “no-shock” value, which is the value of Y that would occur if all shocks 

were zero. We can think of this as decomposing Y into trend and cyclical components. 

Specifically, if we define tY  to be the no-shock or trend level of the log of output in 

period t, then lnt t tY Y Y   is the cyclical component. Working with Romer’s equa-

tion (5.39), if all shocks (in all time periods) were zero, then 0tA   and 1 1ln .t tY Y   

Thus, from (5.39), 

     1
ˆˆln 1 1 ln ,t tY s Y A gt N nt           

and 

   

 

1 1

1

ln ln 1

1 .

t t t t t t

t t

Y Y Y Y Y A

Y A

 



      

   
 

This is Romer’s equation (5.40). 

 Romer derives the dynamic equation for cyclical output in (5.42) through some 

simple, but tricky, manipulation. This equation shows that cyclical output is affected 

by the current innovation to the productivity shock A,t and by two lags of its own 

values. One of these lags reflects the first-order autoregressive process that was as-

sumed for the productivity deviations. Notice that the second lag disappears if A is 

zero. The other lag results from the assumption that investment in the current period 

forms the capital stock of the following period. 

Method of undetermined coefficients 

Suppose that we have a static linear (or linearized) model that we would like to 

solve for a set of N endogenous variables y1, y2, … yN. We have N linear equations each 

of which involves a subset of these endogenous variables and a set of (lagged and) 

exogenous variables xj. Linear algebra teaches us that under appropriate conditions of 

independence and consistency of the equations, there is a unique solution that ex-

presses each yi as a linear function of the complete set of xj variables. (Again, what 

makes this a solution is that each endogenous variable is expressed solely as a function 

of exogenous variables.) 

There are various methods for solving such systems of linear equations; we can 

solve it by successive substitution or Cramer’s Rule, for example. But while we are 

assured that there is a unique linear solution, these methods can yield complicated 

expressions that are very difficult to interpret. An alternative method that sometimes 

leads to a more intuitively logical process of solution is the method of undetermined 
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coefficients. Under this method, one posits the form of the solution, then essentially 

solves both backward and forward to relate the coefficients of the solution (reduced 

form) to those of the structural equations. 

In the case of the model of section 5.6, Romer posits a solution for the log-linear-

ized system of household behavioral equations in the form of equations (5.43) and 

(5.44). These equations express the log-deviations (or cyclical components, if you pre-

fer to think of them that way) of the two household choice variables as linear functions 

of the log-deviations (cyclical components) of the three state variables. To see how 

Romer uses this method to get information about the solution, let us examine equa-

tions (5.46) and (5.47). He derives (5.46) by using the same Taylor-series approxima-

tion technique that he used in Chapter 1 to examine the speed of convergence to the 

Solow steady state (see Chapter 2 of the coursebook). He moves from equation (5.46) 

to (5.47) by substituting backward from the posited solutions (5.43) and (5.44) into 

(5.46). 

He then sets each variable’s coefficients equal on both sides of the equation to get 

(5.48) through (5.50). For example, if you collect terms involving K  on the left-hand 

side of (5.47), the result will be the expression on the left-hand side of (5.48). This is 

set equal to the K  coefficient from the right-hand side of (5.47). Performing the same 

procedure for A  and G  yields equations (5.49) and (5.50), respectively. 

Why must we insist that each pair of coefficients be equal? After all, there are some 

combinations of K , A , and G  for which equation (5.47) will hold even if each set of 

coefficients does not match up. However, equation (5.47) must hold for all sets of val-

ues of K , A , and G . In particular, it must hold when G  = 0 and A  = 0, in which 

case equation (5.47) reduces to only the terms on the two sides involving K . If we 

divide both sides of this reduced equation by K , we get exactly equation (5.48). Sim-

ilarly, since (5.47) must hold in the case that K  = 0 and G  = 0, we can reduce it to the 

terms involving only A , then divide by A  to get equation (5.49). 

While equations (5.48) through (5.50) are not full solutions of the household-

choice model, they allow us to characterize certain properties of the solutions, as 

Romer does in the three following paragraphs. In the section on the intertemporal first-

order condition (beginning on page 210), Romer extends the analysis to a posited so-

lution for the dynamic evolution of K  in equation (5.53). He then shows that it is 

possible to substitute this further and characterize the dynamic behavior of the con-

sumption model, though he asserts correctly that little would be gained by anyone 

(other than ink-producers) from including the resulting complicated expressions in the 

text. 

Instead, Romer presents a series of graphs showing the effects on the model’s ma-

jor endogenous variables of one-time innovations to the productivity and government 
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spending shocks. These graphs were obtained by numerical, rather than algebraic, so-

lution of the model using the parameter values he describes on page 211. These graphs 

are highly representative of the properties of simple RBC models, so you should devote 

sufficient attention to them to assure that you understand them. 

D.  Simulating Romer’s RBC Model  

 A large share of current research in macroeconomics uses simulation of dynamic, 

stochastic general-equilibrium models. The model of Romer’s Chapter 5 is a useful 

subject for such simulation, a task that you will be asked to undertake in an upcoming 

homework project. This section of the chapter provides some background preparation 

for the tasks that you will do in that project. 

Some small changes in notation 

 Romer’s model is a variation of the model discussed by Campbell (1994). You may 

wish to refer to this paper when doing the assignment. Romer’s version makes two 

essential changes to the Campbell model: (1) Romer adds government spending as a 

component of output demand and (2) Romer’s model restricts the labor/leisure term 

of the additive utility function to be logarithmic rather than using the CRRA form.  

 Our focus here is on business cycles, so we approximate the deviations of the vari-

ables around the steady state and ignore changes in the steady-state values themselves 

over time. In Romer’s model, the population N grows at a constant rate n and never 

deviates from its steady-state path. Thus, the deviations from steady-state never arise 

from changes in population and we can suppress population growth by setting n = 0. 

Without loss of generality, we set the constant value of the population at N = 1.  

 In converting the model to a log-linear approximation to deviations from the 

steady state, it is useful to follow Campbell’s notation convention of using lower-case 

letters to represent the logs of capital-letter variables. This requires some minor nota-

tion changes from Romer’s Chapter 5. For example, k  lnK, not K/AL as in the 

growth models that we have studied. Moreover, in this assignment, c  lnC and l  lnL, 

whereas Romer’s Chapter 5 uses c and l to refer to C/N and L/N, respectively. (We do 

not need the per-capita variables here because we have set N = 1.) We will try to be 

careful in the following pages to remind ourselves of the exact definitions of these var-

iables. 

 In addition, we shall make a couple of trivial modifications to Romer’s equations.  

 

 We use Kt to refer to the capital stock at the end of period t rather than (as 

Romer uses it) the beginning. This is a mere change in timing convention that 
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conforms better to the requirements of the Dynare software that we use for 

simulations; it does not change the structure of the model at all.  

 We define Rt to be the “gross” return on capital, which is one plus the net re-

turn that Romer calls rt. The gross return on a bond includes the repayment 

of the bond plus the interest earned. Following our logarithmic-notation con-

vention, we will define rt to be rt  lnRt  Rt – 1, so rt is (within our approxi-

mation) the same as Romer’s variable.  

 To reserve lower-case letters for logs, we denote the real wage by W and its 

log by w.  

 Finally, because we will need g to be the log of G, we will denote the growth 

rate of productivity (Romer’s g) as , with e  1 + . 

The Romer model in our notation 

 We now proceed to state the equations of the Romer model with these notation 

changes. To make it convenient to refer back to the full set of equations in a compact 

location, all eight equations are listed first, with descriptions following: 
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 Equation (1) is Romer’s (5.1), the production function. The only change here is 

that the beginning-of-period capital stock is now called Kt – 1 rather than Kt. 

 Equation (2) is Romer’s (5.2), the capital-accumulation equation. Again, the only 

change is the adjustment of the time subscripts of capital. 

 Equation (3) is Romer’s (5.3), which sets the real wage equal to the marginal prod-

uct of labor. The sole change here is that we are using capital W for the real wage (and 

reserving lower-case w for its log). 

 Equation (4) is Romer’s (5.4), which sets the interest rate equal to the marginal 

product of capital minus the depreciation rate. Note that we have added one to both 

sides of (5.4) to get (4): Rt on the left is 1tr

te r  , and the term –  on the end of the 

right-hand expression has changed to 1 – . 

 Equation (5) is Romer’s (5.23), the Euler equation for intertemporal consumption. 

We use capital C here because our variables are already in per-capita terms (and we 

want lower-case c to be its log) and our Rt + 1  1 + rt + 1. 

 Equation (6) is Romer’s (5.26), which equates the marginal utility of consumption 

to that of leisure. Again, C and W are in capitals rather than Romer’s lower-case, but 

otherwise the equations are identical. 

 Equations (7) and (8) are the equations of motion for technology and government 

spending, corresponding to Romer’s (5.8) through (5.11). The equations are identical 

except for introducing lower-case a and g as the logs of A and G, setting n = 0 (because 

we ignore population growth), and replacing Romer’s growth rate g by . 

 Equations (1) through (8) constitute eight equations in Y, K, L, A, W, R, C, and G, 

plus lags of K and expected future values of C and R. To gain some insight into how 

such a model is solved, suppose that we consider an economy that starts at time zero 

in a steady state with a given, known value of K0. Whatever shocks hit the system at 

time 0, we expect that the economy will re-converge to a steady state after some large 

number of periods, say T. We can iterate the evolution of capital forward through the 

T periods from its initial value K0 using equation (2) (and the other equations of the 

model). Similarly, because we know that the shock will have died out by period T + 

1, we assume that C and R will be back to their steady-state values by then. This allows 

us to solve the model as 8 × T equations in the 8 × T variables corresponding to periods 

1 through T. This solution is much more feasible if the equations of the model are 

linear (not to mention making handing the expectations feasible), so our next step will 

be the express the model as a linear approximation of deviations from the steady state. 

Calibration of the model 

 Recent advances in numerical simulation methods allow one to estimate parame-

ters of the model based on macroeconomic data. (Indeed, Dynare is capable of doing 

such estimation.) However, the econometrics of this are beyond our scope and the 

emphasis here is less on achieving an ideal fit than on understanding how the model 

works, so we will assume a set of parameter values for the model. 
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 In the first paragraph of Romer’s Section 5.7, he suggests the following values for 

the parameters of a model (assuming that each period is one quarter):  

  = 1/3, which corresponds roughly to capital’s share of income, 

  = 0.005, which is a 2% per year growth rate of productivity,  

  = 0.025, a 10% per year rate of depreciation,  

 A = G = 0.95, which means that both productivity and government spend-

ing return to their steady-state paths at a rate of 5% per quarter.  

 The other parameters (, b, and g ) will be set in such a way that the steady-state 

government/output ratio is (G/Y)* = 0.2, the steady-state interest rate is r* = 0.015 (per 

quarter), and steady-state L* = 1/3 (meaning that our representative agent works one-

third of the time). 

Some key steady-state values 

 When we do the log-linear approximations to the model, it will be very useful to 

know some key values in the steady state. The long-run behavior of this model is es-

sentially identical to that of the Ramsey growth model: compare equations (1), (2), 

and (5) to the corresponding equations from Chapter 2. Thus, we can confidently ex-

pect that Y, K, C, G, W, and A should all grow at constant rate  on their steady-state 

growth paths and that R and L should be constant in the steady state. Indeed, we as-

sumed in the calibration discussion above that the steady-state values are R* = 1 + r* = 

1.015 and L* = 1/3.  

 Because many of the variables are growing in the steady state, it makes sense to 

think about ratios among them that might be constant, much like the K/AL variable 

we used in the Solow and Ramsey growth models. It will be convenient later to know 

the steady-state values of three ratios: At/Kt – 1, Yt/Kt – 1, and Ct/Yt, which we denote 

respectively as 
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 We can immediately determine the steady-state value of the interest rate in terms 

of the model’s parameters from (5). In the steady state, consumption is growing at rate 

 so 
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Given our calibrations of steady-state r and , this allows us to determine . (For the 

values suggested above, R*  1.015 = e  + 0.005, or  = 0.0099  0.01.) 

 From equation (4), in the steady state, 
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Recall that we are setting L* = 1/3 as a calibration parameter, so equation (10) gives 

us a steady-state value for the ratio of A to last period’s K that depends only on param-

eters we assume that we know. 

 Following a similar process, you can show that the steady-state value of Yt/Kt – 1 is  
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and the steady-state value of Ct/Yt is 
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(Deriving these results is part of the project exercise.) 

Log-linearization of deviations from the steady state 

 To log-linearize the model, we introduce an additional bit of notation. For a vari-

able Xt, the log-deviation is defined as * *ln ln ,t t t t tx X X x x     where *

tX is the 

value that X would have if the economy were in a steady state at t. The goal of log-

linearization is the express the equations of the model as a linear function of these log-

deviation variables. Some equations are already linear in the logs of the variables. Oth-

ers are not linear in logs and must the approximated using Taylor series. 

 We will work through equations (1), (2), and (5) here. Equations (7) and (8) are 

already in terms of log-deviations. Part of your task for the project is to develop log-

linear versions of equations (3), (4), and (6). 
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 Equation (1) is an example of an equation that is already linear in logs. Such equa-

tions do not require approximation and are easy to handle. Taking the logs of both 

sides of (1) yields  

  1 1 ,t t t ty k a l      (11) 

in terms of the lower-case logged variables. Because this equation must hold in the 

steady state, we know that 

  * * * *

1 1 .t t t ty k a l      (12) 

Subtracting (12) from (11) gives us 

  1 1 .t t t ty k a l      (13) 

Equation (13) is linear in the log-deviation (tilde) variables, so it is the first equation of 

our log-linearized system. 

 Equation (2) is linear in the levels of the variables, not in their logs. Thus, while it 

appears to be a very simple equation it is actually the most challenging to put in log-

linear form, requiring us to use a Taylor-series approximation around the steady-state 

value.  

 Taylor’s Theorem allows us to approximate a function by a straight line around a 

point at which the function’s value is known. We used first-order Taylor series in our 

analysis of the rate of convergence in the Solow model. (See the related section near 

the end of Coursebook Chapter 2.) The basic idea of the Taylor series is that a general 

function f (x) can be approximated near a specified value x* by  

      * * * ,f x f x f x x x    (14) 

where, at the specified value x*, the value of the function  f (x*) and its first derivative 

f  (x*) are known or can be readily calculated. 

 In the figure below, the straight line is the linear approximation to the nonlinear 

function f (x) around the value x*. You can see that the first-order (linear) Taylor ap-

proximation is just the line that is tangent to the function at x*. This approximation 

will be a good one if x is very close to x* or if f (x) is nearly linear. 
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 The Taylor approximation of equation (2) will be accomplished by transforming 

the equation into two additive parts, then taking the approximation of each part. We 

begin by dividing both sides of (2) by Kt – 1 to get 

 

 

   

 

     

 
      

 

1 1 1 1

1 1

1

1 1 .

t t t t

t t t t

t t t t

t t t t

K Y C G

K K K K

K Y C G

K K Y Y

 

This expression is convenient because we know the steady-state values of Kt/Kt – 1, 

Yt/Kt – 1, Ct/Yt, and Gt/Yt:  

 K grows at rate  in the steady state, so the steady-state value of Kt/Kt – 1 is e  

1 + , 

 We calibrate the model to a chosen steady-state value of Gt/Yt, 

 You will show as part of the project that the steady-state value of Yt/Kt – 1 is 

( +  + )/, 

 You will likewise show that the steady-state value of Ct/Yt is 1 – (G/Y)* – 

( + )/( +  + ). 

 

 Taking logs of both sides of this equation, 

       1ln exp 1 ln 1 exp exp .t t t t t t tk y k c y g y                   (15) 

Two parts of equation (15) warrant clarification. First, on the left-hand side,  

 

x 

f(x) 

x* 

f(x*) 

f(x) 
Linear approxi-
mation to f(x):  
f(x*) + f’(x*) (x-x*) 

x1 

f(x1) 

x* + f’(x*) (x1-x*) 

x1-x* 

f’(x*) (x1-x*) 
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1 1

1

ln ln ln ,t
t t t t t

t

K
K K k k k

K
 



 
      

   

so Kt/Kt – 1 = exp(kt). Second, on the right-hand side, ln(Ct/Yt) = ct – yt, so Ct/Yt  =  

exp(ct – yt), and similarly for G. 

 Equation (15) expresses equation (2) in terms of the logs of the variables, but it is 

highly nonlinear. We therefore approximate the nonlinear parts of (15) with first-order 

Taylor series, first for the function on the left of the equal sign then for the one on the 

right.  

 Working first with the left-hand side, define the function 

     1 ln exp 1 .t tf k k          

We can approximate  1 tf k  in a neighborhood around the steady state by 

      1 1 1 ,t tf k f f k       
 

where the growth rate  is known to be the steady-state value of kt. Because we are 

going to express the model in terms of deviations from the steady state, we need worry 

only about the second term. Using the chain rule, 

 
   

 1

1
exp .

exp 1
t t

t

f k k
k

   
   

 

Evaluating this expression at the steady-state value kt =  and taking advantage of the 

approximation exp()  1 +  gives 

 
   

1

1 1
.

1 1
f

      
       

 (16) 

 Turning to the right-hand side of (15), we now tackle the nonlinear function 

       2 , ln 1 exp exp .t t t t t t t tf c y g y c y g y               

For this function of two variables, the first-order Taylor-series approximation is 
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       

 
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          

          
    

          
    

 

where (c – y)* and (g – y)* are the steady-state values. The steady-state value of (g – y)* 

is the log of the calibration parameter (G/Y)*. From the expression in the bullets above,  

 
* *

* * ln ln 1
C G

c y
Y Y

         
         

           

 

 As before, our interest in deviations around the steady state focuses our attention 

on the last two terms of the Taylor approximation. Computing the partial derivative 

with respect to (ct – yt), 
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Evaluating this at the steady-state values gives 

 
   

 

   

 

   

 

 
 
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G Y
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G Y
G Y

     
    

     
      

 
               

           
       


      

Since (G/Y)* is a calibrated parameter, this partial derivative can be evaluated numer-

ically at the steady state in terms of the parameters of the model. Following similar 

logic, it is straightforward to show that 
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 
   

 
 
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c y g y G Y

g y

         
      

 

 

 We are now prepared to express equation (15) in terms of deviations around the 

steady state. Subtracting the steady-state values yields 

           
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                    

             

 

or 

     

       

* *

1 1 1 1

* *

2 2

( )
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t t t t t

t t t t

f k f y y k k

f c y g y f c y g y

       

           

 

 

Substituting from the Taylor-series approximations for the expression on the left and 

the expression on the second line of the right: 

     

 
     

 
     
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1 1
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G Y c c y y

G Y g g y y

 

 
      

  

                       

     
             

 

Or, in terms of the deviations,  

   

 
   

 
   

1 1

*

*

1

1 1 /

/ .

t t t t

t t

t t

k k y k

G Y c y

G Y g y

 

 
  

  

                 

     
       

 

Collecting terms in ty  and 
1tk 
 simplifies this to 
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or  
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 
  

      
  

  

 (17) 

Equation (17) is an approximation of equation (2) that is linear in terms of the log-

deviations from the steady state, which is what we require in order to solve the model. 

Note again that all of the coefficients appearing in (17)—, , , , and (G/Y)* —are 

parameters that we assume to be known. 

 Leaving equations (3) and (4) for you to examine as part of the exercise, we now 

turn to the log-linearization of equation (5), which needs special attention because of 

the expectation operator on the right-hand side. If we take logs of both sides, we get 

 1 1ln / .t t t tc E R C          (18) 

If we could just take the expectation operator outside the log operator, this could easily 

be reduced to an expression in tc , 1tr  , and 1tc  . However, the log of an expectation is 

not equal to the expectation of the log, so it is not so simple. 

 In order to simplify (18) we must make a simple assumption about the distribution 

of the random shocks. If the  shocks both follow the normal probability distribution, 

then all of the log variables in the linearized system will also be normal random varia-

bles and the capital-letter variables will follow the log-normal distribution. If R and C 

are distributed log-normally, then  

 1
1 1
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t t t t
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  
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     



 

6 – 29 

where  (zeta) is a constant. Because  is the same in the steady state as outside, it will 

cancel when we take deviations from the steady state, so we need not evaluate it. 

 Applying this convenient solution to the expectation problem and taking devia-

tions from the steady state in (18) yields 

1 1,t t t t tc E r E c     (19) 

which is our log-deviation version of equation (5). 

E. Calibration vs. Estimation in Empirical Economics 

Early real-business-cycle models have used a different method of empirical valida-

tion than was typical of earlier macroeconomic models. The traditional approach is to 

specify a model consisting of a set of equations having unknown parameters to be es-

timated, then use econometric techniques to estimate the parameters and test whether 

their signs and magnitudes are consistent with the model’s assumptions. The strength 

of this approach is that it provides formal statistical tests of the hypotheses that underlie 

the model. Its weakness is that restrictive assumptions called identifying restrictions 

have to be made in order to estimate the model. Identifying restrictions include as-

sumptions about what variables are exogenous rather than endogenous (recall that ex-

ogenous variables are assumed to be unaffected by any other variables in the model) 

and which variables can be excluded from having a direct effect in the equation deter-

mining each other variable. If an estimated model is based on inappropriate identifying 

restrictions, the estimates and hypothesis tests will generally be invalid. Unfortunately, 

macroeconomists rarely have great confidence about which variables are exogenous 

and about which variables can be safely omitted from each equation. As a result, the 

validity of most econometric results is open to challenge by those who believe that 

inappropriate restrictions were assumed. 

RBC modelers have often eschewed econometric estimation in favor of a tech-

nique called calibration and simulation. This technique is somewhat familiar to you 

from the simple empirical analysis of the Solow and human-capital models. Recall that 

in order to assess the empirical validity of those models we posited values for such 

parameters as capital’s share of GDP and the depreciation rate by rather casual empir-

ical observation. We then plugged in these values to calculate the model’s predictions 

about properties such as the speed of convergence and compared them to actual ob-

served rates of convergence.  
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The procedure for RBC models is similar, but it is more complicated because the 

RBC models are stochastic rather than deterministic. In order to calibrate an RBC 

model, one must obtain external estimates of the parameters of the production func-

tion and utility function, as well as other parameters such as the rate of growth of the 

population. Using these estimates, the model is solved repeatedly using different se-

quences of randomly generated values for the random variables of the model—the dis-

turbances to the rate of technological progress, A. From the results of these many rep-

licated simulations, basic properties of the simulated variables are computed, such as 

relative variances of the variables, correlations between them, and the time pattern of 

co-movements between variables. If the calculated properties of the simulated model 

correspond to those of actual macroeconomic data, then the validity of the model is 

supported. If some properties differ, then the model is deemed unable to explain these 

aspects of economic cycles. 

Some of the parameters of RBC models are ones that would be very difficult to 

estimate econometrically but can be approximated within reasonable bounds by com-

mon sense. For example, it would be difficult or impossible to design an econometric 

equation that would allow the rate of time preference to be directly estimated. How-

ever, we know that plausible values for this parameter must be in the same range as 

real interest rates, conservatively between zero and ten percent per year. 

The advantage of the calibration approach, which is emphasized by those who 

favor RBC models, is that it avoids the awkward and questionable identifying restric-

tions that would be necessary if we were to attempt to estimate these difficult parame-

ters. However, the calibration approach has disadvantages as well. When there is no 

consensus about the value of a parameter, one must simply guess at its value in a cali-

brated model. Moreover, calibrated models do not provide standard errors or test sta-

tistics for the parameters since the parameters are not estimated. The statistical prop-

erties of simulation results in calibrated models are just being developed; most simula-

tion results in published studies are devoid of statistical tests. 

Much progress has been made in the last decade allowing estimation of parameters 

in simulated models. In particular, “Bayesian” statistical methods have become the 

norm in simulating business-cycle models. In Bayesian models, one specifies a “prior” 

probability distribution that specifies our a priori beliefs or knowledge about the param-

eter. The Bayesian algorithm then combines our prior distribution with the infor-

mation provided by the sample data to calculate a “posterior” probability distribution 

for the parameter. The model is simulated using the posterior distributions for all pa-

rameters. Often thousands of replications are done with parameter values being drawn 

randomly from the posterior distributions rather than simply set at their mean values. 

A useful discussion of the Bayesian approach to simulated macroeconomic models 

can be found in Fernández-Villaverde and Rubio-Ramírez (2004). 
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