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A. Topics and Tools 

The neoclassical growth theory that we studied in Coursebook Chapters 2 and 3 

largely evolved in the 1950s. There was considerable filling-in of details in the 1960s, 
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but by the 1970s growth theory had largely become moribund. A tremendous revitali-

zation has occurred since the 1980s, spurred by several shortcomings of the previous 

theories.  

First, because growth rates are taken to be exogenous in the Solow and Ramsey 

models, these theories are unable to explain why growth rates (and, in particular, the 

rate of technological progress) might change from one time period to another. This 

became an important research topic in the 1980s when emerging data began to con-

vince macroeconomists that productivity growth in the United States and other ad-

vanced countries had declined significantly beginning about 1974. 

A second failing of neoclassical growth theory is that it cannot explain the large 

and lasting differentials in per-capita income that we observe across countries and re-

gions. Solow’s growth model implies more rapid convergence of incomes than seems 

actually to have occurred, particularly between developed and developing countries. 

International differences in technological capability can help explain this gap, but beg 

for an economic explanation that cannot be provided by models in which technology 

is exogenous. 

Another feature of neoclassical growth models that some economists and policy-

makers find troublesome is that they provide no mechanism by which the saving and 

investment rate (or government policies directed at influencing it) can affect the steady-

state growth rate. While this conclusion of neoclassical models is not obviously coun-

terfactual, many find it counterintuitive and this more recent literature has explored 

models in which saving has growth effects rather than just level effects. 

The pioneer of “endogenous growth theory” is Paul Romer, a former colleague 

but not a relative of our textbook author.
1

 Romer (1986) is a seminal work in the mod-

ern revitalization of growth theory. The principal engine behind endogenous growth 

is the elimination of the assumption of decreasing returns to “capital.”
2

 In order to 

                                                      
1

In the 1980s and 1990s, there were three famous young Romers teaching macroeconomics at 

the University of California at Berkeley. Paul, who received the 2018 Nobel Prize in economics 

for his work on growth theory and is now at the New York University, David (our author), 

who is a prominent neo-Keynesian, and Christina, who is a macroeconomic historian and was 

chair of the Council of Economic Advisors in early years of the Obama Administration. David 

and Christina are married (and, inevitably, have a son named Paul). 
2

This is a good time to clarify two closely related concepts: “diminishing marginal returns” and 

“decreasing returns to scale.” The former applies to changes in only a single factor of produc-

tion holding all other factors constant. Thus, diminishing returns to capital means that when 

more capital is added to production with all other factors held constant, the ensuing increase 

in output becomes smaller as more and more capital is added. Returns to scale usually apply 

to the effect on output of simultaneous changes in many or all factors of production. “Constant 

returns to scale” by itself means that increases of an equal percentage in all factors leads to an 
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justify this radical departure from microeconomic theory’s long-established “Law of 

Diminishing Returns,” Romer and his followers have broadened the definition of cap-

ital to include human capital and/or knowledge capital as well as the traditional phys-

ical capital. As we shall see, once this broader view of capital is adopted it is no longer 

obvious that there are decreasing returns. This leads to radical changes in the conclu-

sions that we derive from models with assumptions that are otherwise similar to those 

of Solow and Ramsey. 

This coursebook chapter covers material in two of Romer’s textbook chapters. 

Chapter 3 outlines a class of models based on endogenizing the production of A, char-

acterized as the stock of “knowledge capital.” Economies invest in A by devoting re-

sources to research and development (R&D). Chapter 4 focuses on other explanations 

of why gaps in per-capita income seem to persist across countries, including differences 

in human capital and in social infrastructure. 

The mathematical tools used here are largely familiar ones. To keep the analysis 

simple, Romer mostly reverts to the simple Solow assumptions about saving (and other 

static resource-allocation decisions). The original literature on these models bases de-

cisions on utility and profit maximization, which is more satisfactory, but the dynamic 

properties of the model are similar with the easier assumptions, so Chapters 3 and 4 

will teach you the essential features of the model without all the complicated mathe-

matics that we saw in Romer’s Chapter 2.
3

  

As in previous chapters, we will be searching for steady-state balanced growth 

paths. To find these, we will usually look for situations in which the growth rates of 

the key state variables are constant. In most of the models of these chapters, there will 

be two state variables, either physical capital and knowledge capital or physical capital 

and human capital. We will use a two-dimensional phase plane that looks a little like 

the one in the Ramsey model, but is fundamentally different because in these models 

both variables are state variables that cannot jump, whereas in the Ramsey model c 

was a control variable that could jump vertically to adjust to changes in economic 

conditions. That means that we not have saddle-point equilibria here. 

                                                      
increase of the same percentage in output. In this chapter, we will extend the idea of returns to 

scale to situations where a subset of factors changes. 
3

 Barro and Sala-i-Martin (2004) is a more advanced textbook that looks at more sophisticated 

versions of these models. Acemoglu (2009) is a more recent, and more mathematical, treat-

ment. 
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B. What Is “Endogenous” Growth? 

 In the Solow, Ramsey, and Diamond growth models that we have studied, the 

growth rate of natural GDP is n + g. Although we do not usually use that term, it 

would be appropriate to characterize these models as “exogenous-growth” models be-

cause all growth in GDP comes from our exogenous assumptions about growth in the 

labor force and in technological productivity. If we disable growth in the exogenous 

“inputs” to production by setting n = g = 0, then the economy doesn’t grow, thus all 

growth is driven from outside the model. If the exogenous “drivers” stop pushing, the 

economy will stop growing. In contrast, an “endogenous-growth” model is one that 

works like a perpetual-motion machine—once it gets started, it will keep going indefi-

nitely unless something from outside slows it down or stops it. 

 When he wrote his seminal paper in 1956, Solow set out to determine whether the 

self-perpetuating cycle of output, saving, and investment could lead to endogenous 

growth. Under his assumptions it could not. The cycle in Figure 1 diminishes each 

time around the loop in the Solow (and Ramsey and Diamond) model due to dimin-

ishing returns to capital. Each successive increase in the capital stock leads to a smaller 

increase in output than its predecessor, so the growth cycle peters out. The economy 

converges to a steady state in which the only “engine” driving growth is the exogenous 

increases in technology and labor input. 

 

 

Figure 1.  Solow growth cycle 
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 Endogenous-growth theories find ways to alter the assumption of diminishing re-

turns in order to allow an ongoing, perpetual cycle. For example, the first model we 

study in Romer’s Chapter 3 changes how we think of technological progress. Instead 

of an exogenous factor determined outside the model, we now think of technological 

progress as the result of intentional, endogenous research-and-development (R&D) in-

vestments. Just as investment in structures and equipment leads to increases in the 

capital stock (K), investment in R&D leads to increases in the stock of technical 

knowledge (A). Figure 2 shows the augmented growth cycle typical of an endogenous-

growth model.  

 Unlike the Solow model, the cycle of Figure 2 need not diminish as it repeats. 

While physical capital surely has diminishing marginal returns (with a fixed labor force 

and a fixed stock of technology), it is not obvious whether improvements in technology 

as a result of R&D will be subject to diminishing returns. 

 

 

Figure 2.  Endogenous growth cycle 
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in investment in both physical and technology capital, then the cycle perpetuates un-

diminished. 

 This is the basic idea of endogenous growth. Even if there is no growth in the labor 

force or exogenous improvement in technology, the model can sustain ongoing growth 

at an undiminished rate.  

 These models often have equilibrium growth paths with constant growth rates, but 

they do not imply the same kind of convergence behavior as the Solow model. In en-

dogenous-growth models, just because the U.S. has higher current levels of capital per 

worker and per-capita income than Mexico does not mean that Mexico must grow 

faster (assuming that both countries have the same parameters). Without diminishing 

returns there is no reason why investments in additional (physical and knowledge) 

capital in the U.S. will be less productive than those in Mexico, hence no reason that 

they U.S. cannot continue to grow just as fast as Mexico and maintain its advantage. 

Thus, endogenous-growth models can explain why gaps between richer countries and 

poorer ones sometimes might not close over time, even if the two countries have sim-

ilar parameters. 

C. The Microeconomics of Innovation and Human 

Capital Investment 

Romer’s Chapters 3 and 4 examine the macroeconomic implications of investment 

in research and development (innovation) and human capital. However, some of the 

most important theoretical issues in modeling these concepts are microeconomic in na-

ture. Whereas many of the seminal papers in the modern growth literature attempt to 

model these microeconomic issues at some level, Romer’s simplified presentation of 

the basic R&D model in Sections 3.2 and 3.3 largely ignores the microeconomics. In 

this section, we briefly consider some of the basic microeconomic issues involved. 

(Romer discusses some of these topics in Section 3.4 and his presentation of Paul 

Romer’s model in Section 3.5 does include a more complete microeconomic struc-

ture.) 

The models of Chapter 3 attempt to make endogenous the “production” of tech-

nology. In the R&D model, an R&D sector produces additions to society’s stock of 

technical knowledge. In Chapter 4, individuals add to their human capital by spending 

time in education rather than producing output. 

A key microeconomic issue that underlies this analysis is the question of what in-

centive people and firms have to make investments in technological knowledge or in 
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human capital. Unless people get utility directly from the process of research or edu-

cation (which cannot be ruled out—consider the case of the “professional student”), 

they will only undertake these investments if they are able to profit from them suffi-

ciently to justify the opportunity cost. The opportunity cost of investing in research or 

education may include both forgone consumption and the lost alternative opportunity 

of investing in (and earning a return on) physical capital. Thus, if rational agents invest 

in research or education, then the earnings from these activities must have an expected 

present value at least as high as the current consumption that must be forgone and as 

high as the expected present value of the returns to physical capital investment.  

Returns to research and development 

As Romer discusses on page 115, pure knowledge is nonrival, meaning that the use 

of knowledge by one person does not reduce the ability of others to use it. Most “pri-

vate” goods in the economy are, by contrast, rival. To clarify the distinction, think 

about chocolate-chip cookies.
4

 Everyone can use the same (non-rival) recipe for choc-

olate-chip cookies but everyone cannot eat the same (rival) chocolate chips.  

As you learned in Econ 201, a competitive market economy (in the absence of 

externalities) can lead to the production of the efficient amount of traditional, rival 

goods. The market price provides producers and consumers with a scarcity signal that 

can lead to efficient resource allocation by equating the marginal social cost of the 

good with its marginal social benefit. Market price plays the key intermediary role in 

this process. On the production side, producers equate price to the marginal produc-

tion cost. Consumers consume at the level where the marginal benefit of an additional 

unit of the good equals the market price.  

Nonrival goods such as knowledge can be reused by the same person or shared 

with additional people at zero marginal social cost. With marginal cost equal to zero, 

efficiency requires that people should consume knowledge at the level where its mar-

ginal social benefit is also zero. But, as with rival goods, utility-maximizing or profit-

maximizing users of knowledge will “purchase” it up to the point its marginal benefit 

equals the price that is charged. They will choose the optimal level of use (where mar-

ginal benefit is zero) only if the price of knowledge is zero. Thus efficiency requires 

that knowledge, once it has been created, must be distributed freely at a zero price.  

However, if the market price of knowledge is zero, then the market provides no 

financial reward for anyone who incurs the research-and-development costs that are 

necessary to create it. To provide such incentives, most countries have copyright and 

patent laws that grant exclusive (monopoly) intellectual-property rights to individuals 

who create knowledge. With a patent or copyright, the creator may be able to charge 

a positive royalty for the license to use knowledge or to earn monopoly profits by using 

                                                      
4

 Some of us will use any excuse to justify thinking about chocolate-chip cookies. 
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a newly discovered product or process exclusively and prohibiting its use by others. 

However, the argument of the preceding paragraph shows that charging a positive 

price for the use of a nonrival good such as knowledge leads to inefficiency, as does 

the existence of patent-protected monopolies. If individuals must pay to use know-

ledge, but the social cost of using it is zero, then they will choose to use knowledge at 

a lower-than-optimal level. Thus, when intellectual-property laws work as intended, 

they help resolve one problem by encouraging investment in knowledge, but at the 

same time they create another by discouraging its use. This argument is familiar to 

anyone who has followed the sometimes-intense debates about illegal copying of soft-

ware, music, and movies, or about the pricing of pharmaceuticals. 

Patents usually provide excellent protection in the chemicals industry, where the 

inventor can patent the precise chemical formula for a molecule. However, in many 

other industries intellectual-property laws are less effective. For example, suppose that 

a company discovers that a particular tool works better if it is curved than if it is 

straight. It can attempt to profit from its discovery by patenting the curved tool. How-

ever, there are many ways to curve a tool and it is probably impossible to gain patent 

rights on all possible curves that rivals might beneficially use. Once the knowledge that 

curved tools are better becomes public (as it does when a patent issues), others may be 

able to “invent around the patent”—adopt some variant of the improved technology 

without infringing the patent and without paying a royalty to the inventor. For such 

nonexcludable kinds of knowledge, inventors often resort to secrecy in hopes that it will 

be costly and time-consuming for competitors to discover or “reverse engineer” the 

knowledge. When knowledge is both nonrival and nonexcludable, it qualifies as a pure 

public good, with all the familiar resource-allocation problems that public goods entail. 

To deal with this public-good problems, governments often subsidize research and de-

velopment for branches of knowledge where nonexcludability makes patent protection 

ineffective and where wide diffusion of the resulting knowledge seems especially im-

portant. 

The issue of the efficient allocation of resources to research and development is a 

central focus of Reed’s Economics 354: The Economics of Science and Technology. 

If you are interested in pursuing additional readings in this area, visit the instructor’s 

Web page for a link to a recent reading list. 

Human capital vs. knowledge capital 

 By human capital we mean acquired characteristics that make individual workers 

more productive. Although it encompasses such characteristics as health, strength, and 

stamina, the most commonly analyzed sources of human capital are the education, 

training, and experience that a worker embodies. Since education and training involve 

the transmission of knowledge, it might seem like human capital is the same as the 

knowledge capital we study in the R&D model. 
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 However, there is a crucial difference. Knowledge capital is potentially a public 

good whereas human capital is not. An easy way of distinguishing between them is to 

think about the two major roles that most professors play. You see professors most 

often in the classroom, where they are imparting existing knowledge to students. This 

increases the students’ human capital, but does not create new knowledge for society. 

When they are not in the classroom, your professors are likely to be engaged in re-

search. If successful, this research leads to new knowledge capital that everyone can 

potentially share on a nonrival basis. Thus, simply put, society’s knowledge capital is 

everything that is known by someone in the society; your human capital includes your 

personal familiarity with and ability to use part of that knowledge. Your human capital 

is personal to you—the fact that you have obtained knowledge may make you more 

productive but it does not (usually) raise anyone else’s productivity. Thus human cap-

ital does not have the public-good characteristics of knowledge capital.  

Returns to education 

 Although human capital is not a public good in the same way as knowledge capi-

tal, education raises interesting economic issues of its own. Some aspects of education 

have elements of nonrivalry. The syllabus for a course or a recorded lecture can be 

shared widely at minimal cost. However, most other aspects of education are rival. 

Classroom seats and instructor time are limited and putting one student into a seat 

denies that seat to someone else. Moreover, most kinds of education are easily exclud-

able. Those who do not pay for a seat in the class can be denied access. Thus, it does 

not appear that education is truly a public good.
5

 

One can imagine an uncomplicated world in which markets could allocate educa-

tion efficiently. If the benefits of a person’s education and training (including on-the-

job training) are perfectly reflected in his or her enhanced productivity, then someone 

who has acquired more human capital should receive commensurately higher wages. 

In this case, the individual can make an optimal personal decision about whether the 

returns (higher productivity and wages) to further human-capital acquisition justify the 

cost. There is no market failure here and education/human capital is similar to other 

kinds of investment/capital. 

However, there are several problems that may upset efficient resource allocation 

in education markets. One is the problem of borrowing to finance education invest-

ment. Investments in capital—whether physical, human, or “knowledge capital” ac-

quired through research and development—require a substantial initial expenditure, 

                                                      
5

Some economists argue that everyone gains from having a more educated society, so that ad-

ditional education for one individual benefits others as well as herself. In this case, there is a 

positive externality and the market system of incentives will lead to underinvestment in educa-

tion. 
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followed by a lengthy period over which the investment earns a return. The person 

desiring to make the investment often does not have sufficient liquid funds at the time 

the investment is to be made, so a “capital market” in which one can borrow for such 

expenditures is a useful social institution. However, capital markets can only function 

if lenders can be reasonably sure that they will be repaid.  

A borrower who purchases a physical capital good such as a building or a machine 

(or a house or car) must normally pledge the capital good as collateral on the loan. If 

the borrower fails to repay the loan as required, the lender can seize the capital good 

and resell it to recover at least part of his or her money. However, a borrower’s educa-

tion cannot be seized and, because most societies outlaw slavery, borrowers them-

selves cannot be seized by the lender either.
6

 This limits the recourse of lenders in cases 

of default, which makes it hard for the private market to provide access to loans for 

human-capital investment.  

Government-subsidized student loans attempt to remedy this market failure by 

providing government guarantees in place of collateral. Many Reed students can con-

firm that this allows a thriving market in student loans, but it does not assure allocative 

efficiency. Government guarantees generally make student loans less risky to lenders 

than the intrinsic economic riskiness of the returns to education. Thus, interest rates 

will usually be subsidized below the level that would be appropriate to the investment’s 

risk and this will encourage overuse of student loans. Furthermore, while the govern-

ment guarantees allow the market to function, the government is often no more effec-

tive at collecting money from defaulters than a private lender. Subsidies and defaults 

divert the some of the cost of human-capital investment from the investor/student onto 

the general taxpayer. 

A second difficulty arises when human capital is acquired through on-the-job 

learning. In most jobs, the worker learns a great deal about how the job is done during 

the initial months of employment. During that period, productivity increases rapidly 

as the worker gets better at what he or she does. A “perfect” market might capture this 

learning by starting the individual at an extremely low wage (or the new worker might 

even pay the firm for the privilege of learning the job), then increasing the wage as 

productivity rises. This scheme implicitly or explicitly makes the worker pay for the 

investment in human capital. To the extent that workers value the human capital they 

acquire, they may be willing to incur this cost, although if the initial wage is low 

enough it might force them into a borrowing situation that raises the same problem of 

collateral described above. 

However, much of the knowledge acquired on the job may be “firm-specific” hu-

man capital, such as knowledge of the internal rules and operations of a particular 

organization, and be largely useless if a worker moves to another firm. In a world in 

                                                      
6

 Notwithstanding the fellow who was “re-possessed” after failing to pay his exorcist’s bill. 
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which layoffs and job changes are common, workers will be reluctant to bear the cost 

of any training that is useful only when he or she works for one particular employer. 

The firm will also hesitate to invest in a particular worker when the worker might 

depart, though there is less risk of the worker quitting at the end of the training period 

if most of the training is firm-specific. These difficulties in appropriating the returns to 

human-capital investment can lead to underinvestment in training. 

A third problem that complicates the efficient allocation of resources to human 

capital is that the link between education and productivity is not well understood. It is 

uncontroversial that more highly educated workers are more productive, what is at 

issue is which way the causality runs: whether people who are innately more produc-

tive tend to invest in more education or whether it is the education itself that makes 

them productive. In our growth models, we assume that education makes individuals 

more productive. However, some economists argue that education acts mostly as a 

screening or ranking device. According to this “signaling” theory, firms hire college 

graduates at high wages not because they have learned anything that makes them more 

productive, but because the fact that they finished college signals that they are individ-

uals of high ability and potentially high productivity.  

If one takes this signaling argument to its extreme, then one may claim that edu-

cation has little effect on productivity; it just acts like an elaborate (and costly) place-

ment test for employers. For example, a century ago a relatively small share of people 

finished high school and very few finished four years of college. According to the sig-

naling model, being a high-school graduate at that time signaled that you were a high-

quality worker and being a college graduate signaled that you were in an elite category 

of high achievers. Today the majority of people finish high school, so the signaling 

value of a high-school diploma is smaller. Many individuals finish college, so even a 

college degree is no longer an indicator of exceptional ability. To demonstrate a truly 

elite status one must now attend graduate school and get an advanced degree. Accord-

ing to the extreme version of the signaling theory, the people who now get good jobs 

with a graduate degree used to be able to get the same jobs (and do them just as well) 

with a bachelor’s degree. If the additional years of study do not raise productivity, then 

they are a costly waste of resources. 

Although most economists believe that education makes individuals more produc-

tive, it is difficult to disprove the signaling model because in many cases the two mod-

els predict similar outcomes. The human-capital model in Romer’s Chapter 4 assumes 

that education is an investment in human capital that enhances workers’ productivity. 

However, to the extent that education is mainly a signaling tool, this model may over-

state the benefits of education. 
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D. Understanding Romer’s Chapter 3 

Introduction 

Chapter 3 examines an important strain of modern research on economic growth. 

This approach models the production of improvements in technology by including 

“knowledge capital” along with physical capital. We must use a two-sector model be-

cause we assume that knowledge production does not follow the same production 

function as goods production; there is an R&D (or knowledge-production) sector 

alongside the usual sector producing physical goods. 

The introduction of a second sector requires the use of some new modeling tech-

niques. For example, aggregate inputs must now be divided between the production 

of “goods”—either physical capital or consumption goods—in one sector and the pro-

duction of knowledge in the other. This is the role of the a coefficients in Romer’s basic 

R&D model. 

The crucial novelty that makes these models strongly different from than the ones 

of the earlier chapters is that the introduction of human or knowledge capital may 

allow us to sidestep the usual assumptions of (1) diminishing returns to capital and (2) 

constant overall returns to scale. It is intuitively clear that adding more physical capital 

to a given amount of labor must eventually lead to a diminishing marginal product of 

capital (a typist doesn’t need seven typewriters), but there is no obvious reason why 

increases in knowledge would be subject to such diminishing returns.
7

 Moreover, 

knowledge spillovers from one producer to another may allow increasing returns to 

scale for the economy as a whole, even if traditional factors (labor and physical capital) 

produce with constant returns to scale for any given state of technology.
8

 

The textbook’s modeling strategy and the research literature 

As Romer notes early in Chapter 3, the model he presents is a simplified version 

of a family of models that evolved in the growth literature in the early 1990s. A look 

at the research papers he cites on page 103 will verify for you that he has made several 

simplifying assumptions. What he has done is to describe in detail a simple version of 

this class of models that preserves their essential features. 

For example, Romer’s model uses a Cobb-Douglas production function. This al-

lows us to evaluate marginal products explicitly and solve growth-rate equations that 

                                                      
7

 This is explored in the R&D model of Sections 3.1–3.3. 
8

 This channel is central to Paul Romer’s model in Section 3.5 and is the focus (in a simpler 

framework) of Problem 3.12 at the end of the chapter. 
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would otherwise have only implicit solutions. Similarly, he relies on the assumption 

of a constant saving rate in most of Chapter 3 rather than building utility maximization 

into the model, though this is relaxed in the discussion of the (Paul) Romer model in 

Section 3.5. The more general models lead to the same qualitative conclusions, so we 

have gained expositional simplicity without losing the basic logic of the model. Stu-

dents who are interested in the more general approach are strongly encouraged to ex-

plore the papers cited in Chapter 3. 

The basic setup of the R&D model 

A key difference from the previous growth models that you have encountered is 

that this model has two sectors. In the R&D model, there are two kinds of capital: 

physical capital, which is familiar from earlier models, and “knowledge capital.” Since 

there are two stocks, or state variables, we have two equations of motion and must 

analyze the dynamic evolution of the two stocks jointly.
9

 Romer builds up to this grad-

ually by first ignoring physical capital and looking at the implications of knowledge 

investment as a single state variable (in Section 3.2). He then brings physical capital 

back in to create the formal two-state-variable model in Section 3.3. 

Individuals can use their labor and capital resources either in the sector producing 

physical goods or in the sector producing knowledge. How much of the economy’s 

resources will be dedicated to producing knowledge rather than goods? This is a com-

plicated question for several reasons. As discussed in the previous section of this chap-

ter, there are significant conceptual differences between these kinds of capital that may 

have important implications for the incentives of the private sector to invest in them. 

Romer avoids this issue for now by assuming that aK and aL, the shares of capital and 

labor devoted to knowledge production, are exogenous. A more satisfactory approach 

(which most of the research literature takes) would be to endogenize these values by 

examining the markets for factors of production in detail and modeling the choice of 

owners of factors about the industry to which they sell their resources. 

                                                      
9

This is somewhat like what we did with c and k in the Ramsey model, but it is a little different. 

In the Ramsey model, c is a “control” variable rather than a state variable because it can jump 

discretely at an instant of time. (If something happens to change their situation, consumers can 

raise or lower the flow of consumption spending instantly at time t in response.) This was cru-

cially important in allowing the model to converge along the saddle path. If c did not jump 

exactly to the value required by the saddle path, the model would have been unstable. Stock or 

“state” variables such as capital and knowledge cannot jump in the same way. Their value at 

any instant depends only on past investment; they change smoothly through the equations of 

motion of the model. Although we can imagine discrete jumps in these variables—perhaps a 

disaster that destroys capital instantly—this would imply a momentary suspension of the equa-

tion of motion that says that depreciation is proportional to the stock. 
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The knowledge production function 

There are several features of knowledge production that are worth stressing in this 

model. First, knowledge does not depreciate. From Romer’s equation (3.2), it is clear 

that if aK and aL are zero (no capital and labor resources are devoted to knowledge 

accumulation), the stock stays constant, ( ) 0A t   .  No new knowledge is produced, but 

old knowledge does not disappear.  

The absence of depreciation of knowledge may seem counterintuitive, since old 

knowledge does not seem to be worth very much in today’s world. However, we must 

distinguish between the usefulness of a specific nugget of knowledge and the existence of 

the nugget of knowledge itself. The usefulness may decline even if we do not have 

depreciation of the aggregate stock itself. The knowledge of how to produce 1980-vin-

tage computers is only useless today because it has been superseded by even more 

modern knowledge (most of which builds on the original knowledge). A reasonable 

way to think about the absence of aggregate depreciation of knowledge in equation 

(3.2) is that technical knowledge does not disappear or wear out with use (as physical 

machines do). An economy that devotes no resources to the production of knowledge 

does not slide backwards; it merely fails to progress.
10

 

A second feature of the knowledge production function is the possibility of increas-

ing or decreasing returns to scale. As Romer notes on page 103, the usual “replication” 

argument for aggregate constant returns to scale does not apply to the production of 

knowledge. He presents reasons why returns to scale might be either decreasing or 

increasing. 

Finally, the role of the  parameter in equation (3.2) is very important. (This  is 

totally unrelated to the  in the CRRA utility function that we used in the previous 

chapter.) To see the intuition of the role that  plays in the analysis, divide both sides 

of (3.2) by A(t) to get 

1( )
[ ( )] [ ( )] ( ) .

( )
K L

A t
B a K t a L t A t

A t

    (1) 

The left-hand side of equation (1) is the growth rate of technology (in percentage 

terms). Suppose that the amounts of capital and labor allocated to knowledge produc-

tion are fixed, i.e., aKK(t) and aLL(t) are constant. Equation (1) shows that this will lead 

to a constant rate of growth in the knowledge stock if  = 1, since A(t)0 = 1 and thus 

                                                      
10

 There have been historical instances of knowledge being lost. Before written archives of tech-

nological literature existed, knowledge of techniques could die with the individuals who knew 

them. Landes (1983) describes the example of the fabulous Chinese water clock constructed by 

Su Sung in 1094 and lost to posterity because only he knew the technology. 
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A(t) vanishes from the right-hand side. This corresponds to the kind of progress as-

sumed in the Solow and Ramsey models: growth in A(t) at a constant rate g.
11

 

If  > 1, then   1 > 0 and an increase in A(t) will cause the growth rate of A(t) 

to increase, even given fixed amounts of capital and labor devoted to knowledge pro-

duction. In other words, when  > 1, the more knowledge we have, the faster the stock 

of knowledge grows for a given amount of resources devoted to knowledge production. 

More knowledge accelerates the growth rate, which of course raises the level of know-

ledge even more rapidly, causing a further increase in the growth rate, and so on. Not 

surprisingly, this condition turns out to be associated with explosively accelerating 

growth in technology, productivity, and output. 

If  < 1, then   1 < 0 and each increase in A(t) lowers the growth rate of A(t) 

with other factor inputs held constant. In this case, technology exhibits a kind of di-

minishing returns with respect to its own production that is similar to that of capital in 

the Solow model.  

Capital-generated growth in the Solow model was limited by the fact that capital 

faced diminishing returns in reproducing itself. Eventually, the economy settled into a 

steady state in which capital could no longer grow relative to other factors. The same 

thing happens to technology in the no-physical-capital R&D model when  < 1: Even-

tually, technology-induced growth is limited and, without growth in the non-produced 

factor (labor), the economy becomes stationary (zero growth). 

Analysis of the model without capital 

Romer uses phase diagrams to search for a steady state in this model, just as we 

did in the Solow model when we plotted k  as a function of k and looked for the point 

at which the curve intersected the horizontal axis. However, in the Solow analysis, we 

were looking for a “stationary value” of k, which was a ratio among variables in the 

model (K/AL). The analysis represented in Romer’s Figure 3.1 is similar, but here we 

seek a stationary value for gA, the growth rate of technology, instead of k. 

To find a stationary value of gA in the R&D model, we need to examine Ag , the 

change over time in the growth rate of A(t). That means that we are looking at the 

change in a growth rate, which might be a little confusing at first—it is related to the 

second derivative of A with respect to time.  

Note that the sign of gA (and not the sign of Ag ) tells us whether A(t) is growing or 

shrinking. If gA is positive, then A is growing; if gA < 0 then it is shrinking. In contrast, 

                                                      
11

 However, note that in a Solow/Ramsey steady state the total quantities of labor and capital 

are increasing, so if the a values are constant aKK(t) and aLL(t) would be increasing over time 

and  = 1 does not automatically lead to an equilibrium growth path that is similar to those 

models. 
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the condition that Ag  > 0 means that the growth rate gA (whether positive or negative) 

is getting larger as time passes. Similarly, the statement that Ag < 0 means that the 

growth rate of A(t) is getting smaller over time.  

The intermediate case of Ag  = 0 is the case where the growth rate of A(t) is con-

stant. This situation could be a steady-state, constant-growth equilibrium. Our search 

for a steady state involves finding conditions under which Ag  = 0, then assessing 

whether the economy would converge to such a state. 

In order to find the steady state in which Ag  = 0, Romer first derives an expression 

for gA, which is just our equation (1) with  set to 0 to reflect the no-capital assumption 

(Romer’s equation (3.7)). To get an expression for Ag , he takes the growth rate of (3.7) 

with respect to time to get (3.8). Getting (3.8) from (3.7) is not obvious upon inspec-

tion, so let’s examine the intervening steps. 

Looking closely at (3.7), BaL
 is constant over time, so it will not play an important 

role in the time derivative. L(t) and A(t) both vary with respect to time, and their power 

functions are multiplied by each other in (3.7), so we will need to use the product rule 

and the chain rule to differentiate with respect to time. Applying these rules directly to 

(3.7) yields 

1 1 2

1 1

( ) ( ) ( ) ( ) ( 1) ( ) ( ) ( )

( ) ( )
( ) ( ) ( 1) ( ) ( )

( ) ( )

( ) ( )
( ) ( 1) ( ) ,

( ) ( )

A L

L L

A A

g t Ba L t A t L t L t A t A t

L t A t
Ba L t A t Ba L t A t

L t A t

L t A t
g t g t

L t A t

    

     

      

          

    

 

which simplifies to 

 ( ) ( 1) ( ) ( ).A A Ag t n g t g t     (2) 

 Equation (2) can be rewritten as Romer’s equation (3.9): 

2( ) ( ) ( 1)[ ( )] ,A A Ag t ng t g t     

which shows that  A
tg  is a quadratic function of gA(t). That means that we get a pa-

rabola if we graph  A
tg  as a function of gA(t). We can use basic algebra to examine 

the characteristics of this parabola. Because there is no constant term in this quadratic 
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function,  A
tg  = 0 when gA(t) = 0, so the parabola must pass through the origin. The 

slope of the function is its derivative with respect to gA(t), 

( )
2( 1) ( ).

( )

A
A

A

dg t
n g t

dg t
     (3) 

At the origin, gA(t) = 0, so the slope expression of equation (3) is n > 0 and the function 

is sloping upward at the origin. 

The sign of the coefficient on the squared term, which is   1 in (2), determines 

the convexity or concavity of the parabola. If   1 > 0 then the slope of the function 

is increasing from left to right and the parabola opens upward. Since it starts at the 

origin with a positive slope, this means that it heads upward at an increasing rate as 

shown in Romer’s Figure 3.4. If   1 < 0, then the slope is decreasing and the parabola 

opens downward, reaching a maximum in the positive quadrant and intersecting the 

horizontal axis as shown in Romer’s Figure 3.1. In the borderline case where   1 = 

0, the function is a positively sloped straight line coming out of the origin. (The straight 

line is a special case of the parabola in which the coefficient on the squared term is 

zero.) 

Clearly, the decisive condition determining the shape of the parabola (and there-

fore the dynamic behavior of gA(t)) is whether  is greater than, less than, or equal to 

one. This provides mathematical support for our discussion in the previous section, 

where we asserted that the magnitude of  was very important. 

When  < 1, growth in technology is not “self-sustaining” due to diminishing re-

turns to knowledge. Past discoveries make future discoveries more costly in terms of 

resources. Positive technological progress can only be sustained in this case if growth 

in the labor force allows more and more labor resources to be devoted to research as 

time passes. Note that if n  0, then the slope of the  A
tg  function is zero or negative 

at the origin. With n  0 and  < 1, the  A
tg  function immediately turns downward 

into the negative quadrant. In this case, the only point at which   0
A

tg   is the origin 

and the economy approaches a steady state in which gA(t) = 0 and stops growing. Thus, 

we conclude that in the case where  < 1, only steady growth in the labor force (n > 0) 

will allow positive technological progress in a steady state. 

If  > 1, the rate of technological progress may grow explosively. Each discovery 

opens up a multiplicity of new opportunities so that future discoveries become less 

costly to find. Progress feeds on itself so strongly that growth in technology can accel-

erate endlessly even with constant resources devoted to R&D. If n  0, there is no point 

to the right of the origin at which the curve intersects the horizontal axis, so there is 

no nonzero steady-state rate of technical progress.  
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It was noted in the previous section that if  = 1, then the growth rate of technology 

is neither enhanced nor retarded by the pre-existing level of technology. If the labor 

force does not grow (n = 0) and  = 1, then technological progress will occur at a 

constant rate. Both terms on the right of equation (3) are zero, so  A
tg  = 0 and gA(t) 

remains at BaL
L, the level dictated by Romer’s equation (3.7). (Note that L is not a 

function of time since it is constant when n = 0.) In this case, the line coincides with 

the horizontal axis, meaning that any level of technology growth seems to be a poten-

tial steady state—whatever the growth rate of A, it will remain constant. The technol-

ogy production function tells us that the growth rate at which the economy starts and 

remains is BaL
L.  

There are several key characteristics of the “linear growth model” with  = 1 that 

make it interesting to growth economists. First, increasing the allocation of resources 

to research (aL) leads to a higher steady-state growth rate. That is the sense in which 

models of this kind are called “endogenous” growth models. An economy that makes 

an economic choice to devote more of its resources to accumulating knowledge capital 

(perhaps through a policy of subsidizing R&D) will have a permanently higher growth 

rate. By contrast, the Solow model predicts that economies that devote more resources 

to capital accumulation (saving) will have a higher level of income, but not a perma-

nently higher growth rate. Thus, changes in the rate of investment have “growth ef-

fects” in endogenous-growth models but just “level effects” in convergent models such 

as Solow’s. 

Second, if we change our assumption about growth in the labor force to allow 

n > 0, then increased labor input over time will result in everlasting acceleration of 

technological progress if  = 1. A growing population means (for given aL) more sci-

entists, which means more discoveries and faster technological advance. Since 

knowledge is assumed to be nonrival, each discovery is costlessly shared by all, so it is 

the total amount of knowledge created that drives growth, not knowledge-creation per 

capita, which allows this kind of “scale effect” to apply.
12

 

Finally, as Romer notes on page 107, the crucial parameter in determining the 

dynamics of the system is the magnitude of returns to scale to produced factors. By this 

we mean “Does a doubling of only the produced factors lead to a doubling (or more 

or less than a doubling) of production?” The Solow model had constant returns to scale 

to all factors (labor and capital), but diminishing returns to the single produced factor 

(capital). Diminishing returns to produced factors assure that the sf(k) curve in the 

                                                      
12

 Some growth models have made the alternative assumption: that knowledge is strictly pri-

vate. In these cases, it is knowledge production per capita that matter for growth. In Chapter 5 

we consider a paper by Peter Klenow (1998) that tests this assumption empirically. 
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Solow model is concave from below, making convergence to a steady state inevitable 

and ruling out self-sustaining “endogenous” growth. 

Since knowledge is the only produced factor in the R&D model of section 3.2, the 

relevant condition for returns to scale in produced factors is whether  is greater than, 

less than, or equal to one. This is exactly the condition that we showed above to have 

a decisive effect on the dynamic properties of the model. We shall find that this is a 

quite general proposition in this class of models: growth is self-limiting, self-sustaining, 

or explosive depending on whether returns to scale to produced factors are decreasing, 

constant, or increasing. 

The R&D model with capital 

The biggest methodological difference between the full R&D model and previous 

models is the presence of a second state variable K along with A. We now explore the 

full, two-state-variable version of the R&D model that Romer presents in section 3.3.  

To search for a steady state, we now seek values at which the growth rates of both 

state variables are constant over time. In other words, in addition to seeking conditions 

under which  A
 tg  = 0, we must also find conditions that lead to  K

 tg  = 0.  

Since  A
tg  and  K

tg  will, in general, both depend on the current values of both 

gA(t) and gK(t), we will have to use a two-dimensional phase diagram. Romer's Figures 

3.5 through 3.8 build such diagrams for two cases of the model. As we did for the 

Ramsey model, we divide the space of possible values for gA and gK into regions ac-

cording to whether Ag  and Kg  are respectively positive or negative. To do this, we 

plot the curves corresponding to the conditions Ag  = 0 and Kg  = 0. We then use ar-

rows to indicate the directions of horizontal and vertical changes in gA and gK from any 

point. 

For the general R&D model, it turns out that both of the relevant curves are up-

ward-sloping lines. If we assume that n > 0, then the line corresponding to Kg  = 0 has 

a positive vertical intercept and a slope of one; the line for Ag  = 0 has a negative ver-

tical intercept and a slope of (1  )/.  The behavior of the system depends on the 

relative slopes of the two lines: whether (1  )/ is greater than, less than, or equal to 

one.  

The Ag  = 0 line starts below the Kg  = 0 line, since the former has a negative in-

tercept and the latter a positive one. If (1  )/ > 1, then the Ag  = 0 line has a steeper 

slope and will eventually intersect the Kg  = 0 line. Thus, if (1  )/ > 1, the model 

has a unique steady state with the growth rates of capital and technology settling down 

to constant values. Alternatively, if (1  )/ = 1, the lines are parallel and if (1  )/ 

< 1, the lines not only never intersect in the positive quadrant but are getting farther 
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apart as the economy moves away from the origin. In these cases, there is no unique 

steady state. 

The dynamic character of the model thus depends on the magnitude of (1  )/ 

relative to one. Note that (1  )/ = 1 if and only if 1   = , or  +  = 1. For a 

given level of labor input (the non-produced factor), Romer’s equation (3.2) shows that 

returns to scale in the production of new knowledge using the two produced factors K 

and A are measured by  + . Thus, our conclusion in the general R&D model is 

parallel to our discussion above when there was no capital: with a steadily increasing 

labor force (n > 0), the model can converge to a steady state with constant growth only 

if there are diminishing returns to the produced factors. With constant or increasing 

returns to the produced factors, the growth rate accelerates indefinitely. 

Returns to scale and endogenous growth 

We have stressed several times in this chapter the importance of returns to scale in 

determining the properties of the model. Specifically, we have said that the long-run 

properties of growth models are determined by whether there are decreasing, constant, 

or increasing returns to scale in the produced inputs.  

Because this issue has had a profound impact on modern growth theory, it is worth 

digressing to consider it in more detail. First of all, we need to be clear about what we 

mean by a “produced input” or “produced factor.” A better term might be “endoge-

nous input” because we consider an input to be produced if it is created endogenously 

within the model through the use of other factors of production. Since pure labor is 

exogenous in all of the growth models we have studied, it is not considered a produced 

factor.  

In the simple Solow model of Romer’s Chapter 1, advances in technology come 

from outside—there is no way to reallocate resources to get faster technological 

change—so the A term is not a produced input. However, in the R&D model of this 

chapter, A is produced directly by labor and capital (and A itself). Adding more re-

sources to the R&D production function leads to more rapid accumulation of 

knowledge capital A. Thus, the evolution of A is endogenous and it is a produced input 

in this model. 

Returns to scale in the produced inputs are determined by what happens to output 

if we multiply only the produced inputs by a positive constant . If output goes up by less 

than a factor of , then we have decreasing returns in produced inputs. We have con-

stant returns to produced inputs if output goes up exactly by a factor of , and increas-

ing returns if it increases by more than that. 

“Neoclassical” growth models such as the Solow and Ramsey models have de-

creasing returns to produced inputs, although their production functions usually have 

constant returns to all inputs. Modern growth models have emphasized the case of 

constant returns to produced inputs (implying increasing returns to scale in all inputs), 
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which leads to so-called endogenous growth. We saw in the R&D model that changes 

in the economy’s choice parameters, such as the saving rate and the shares of inputs 

devoted to R&D, lead to permanent changes in the steady-state growth rates in con-

stant-returns models. These parameters have “growth effects” on output in endoge-

nous growth models (i.e., they change the steady-state growth rate), but only “level 

effects” in neoclassical models (where they affect the level, but not the slope, of the 

steady-state growth path). 

As noted in the introduction to this chapter, economists have found endogenous 

growth models appealing for several reasons. First, they often lack the strong—and 

arguably counterfactual—convergence implications of neoclassical models. Second, 

many economists believe that such fundamental economic parameters as the saving 

rate actually have growth effects rather than just level effects on real output. 

The debate over neoclassical vs. endogenous growth models has spawned a volu-

minous empirical literature. We shall examine a small sample of papers from this lit-

erature in Chapter 5. 

Scale effects in the R&D model 

 One characteristic of the R&D model that may seem unrealistic at first glance is 

the presence of scale effects. Notice in Romer’s equation (3.21) that the growth rate of 

knowledge depends positively on the level of the population. That means that econo-

mies with large populations should grow faster than smaller ones. This result may 

seem surprising, but it is a direct result of the nonrival nature of knowledge in the 

model. 

 Intuitively, the more people there are in the economy, the more people can work 

on R&D. That will lead to the creation of more knowledge. Because knowledge is 

nonrival, everyone can use this knowledge to increase productivity—as discussed 

above, it is total knowledge that matters, not per-capita knowledge. The larger is the 

population, the more scientists are producing knowledge (for everyone to use) and the 

faster is economic growth. 

 International diffusion of knowledge is an important issue related to the possibility 

of scale effects. The relevant boundaries for the “economy” under consideration in the 

R&D model are the boundaries at which new knowledge stops being usable. If all 

knowledge generated anywhere in the world is immediately usable in production eve-

rywhere, then these scale effects occur on a global scale: growth in knowledge depends 

on the world’s population. If some parts of the world economy operate in (knowledge) 

isolation, then knowledge in these enclaves would grow at a slower rate that is propor-

tional to their own populations. 

 Based on this argument, it seems to be in the interest of every country to be inte-

grated into a world knowledge network where knowledge moves freely. However, 

there are many reasons why knowledge might not transfer effectively on a worldwide 
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scale. In practice, the use of knowledge requires substantial human capital in the using 

country to understand and implement the advances that have occurred. Some coun-

tries may lack the local population of engineers to apply new knowledge.
13

 It is also 

likely that particular pieces of knowledge are more useful in some economies than in 

others. For example, new hybrids of crops designed for temperate regions may not 

help agricultural productivity in tropical areas. Advances in robotics may be irrelevant 

to a labor-intensive economy where robots are not used because labor is cheap relative 

to capital. 

 In an interesting paper discussed by Romer in Section 3.7, Michael Kremer exam-

ined the plausibility of scale effects. Looking at an outrageously long time span (and 

correspondingly imprecise data), Kremer (1993) does indeed find that growth has been 

larger during periods and in places where population has been larger. Historically iso-

lated enclaves such as Australia and Tasmania grew more slowly than large contigu-

ous landmasses with large populations. Moreover, the overall growth rate of the econ-

omy (proxied by growth in population) seems to have accelerated over the epochs of 

human history as the level of population has gotten larger. 

The (Paul) Romer model 

 Section 3.5 discusses in more detail a simplified version of the model developed 

by Paul Romer in one of his early articles on economic growth. We do not have time 

to study this model in detail in this class. Students who are interested in the details of 

this model may want to explore either the seminal papers themselves or the advanced 

textbooks by Barro and Sala-i-Martin (2004) or Acemoglu (2009). 

E. Understanding Romer’s Chapter 4 

Kinds of human-capital models 

 What is the nature of investment in human capital? As college students, you are 

intimately familiar with the process. To break it down into its economic fundamentals, 

you incur two kinds of costs in order to be educated. First, there is the explicit cost of 

hiring teachers. This is usually done indirectly by payments to a school, which pays 

for the labor and capital inputs associated with education. Government often pays at 

least part of these costs through grants, scholarships, or direct operation of publicly 

run schools. 

                                                      
13

 This is related to the concept of “social capability” discussed by Moses Abramovitz (1986). 
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 The second cost is the implicit cost of your time and effort. If you were not a stu-

dent, you could be working, producing, and earning income. Thus, your forgone pro-

duction and earnings are also part of the cost of acquiring human capital. 

 Growth models that incorporate human capital typically model only one of these 

two costs. For example, in the growth model that Romer describes in section 4.1, the 

only cost of education is the forgone earnings of the students. All labor (excluding 

students) and capital are producing “goods,” so none are used in education. This al-

lows the model to be a one-sector model since it requires no “education production 

function” analogous to the knowledge production function in Chapter 3. 

 An alternative of incorporating human capital in a growth model is to consider the 

resources (other than the student’s forgone labor) spent on education as investment in 

human capital. Romer has problems at the end of Chapter 4 that explore models of 

this kind. In problems 4.5 and 4.6, education is part of the generic “output” aggregate 

Y. A fraction sH of Y is “saved/invested” in the form of human capital. This model has 

two saving rates—one for physical capital and one for human capital—but only one 

production function since education, physical capital, and consumption goods are all 

interchangeable parts of Y. 

 The models in problems 4.8 and 4.9 have a separate production function for hu-

man capital alongside the production function for goods. Again, the costs of forgone 

student labor are not modeled explicitly, although one might consider students to be 

part of the L allocated to human-capital production. As in the R&D model of Chapter 

3, we have to consider the allocation of labor and capital resources between the two 

sectors. In Chapter 3, labor and capital services are divided between research (the R&D 

sector) and goods production; in the models of problems 4.8 and 4.9, they are divided 

between education and goods production. 

 Neither approach is necessarily better and including both the loss of the students’ 

labor and the other labor/capital costs of education would make the model much more 

complex. One can argue that modeling forgone labor is more reasonable because the 

greatest cost of education is the enormous number of student hours that are diverted 

from production into human-capital accumulation. Even at Reed, which is justifiably 

proud of its low student/faculty ratio, there are about ten times as many potential 

workers in the student body as on the faculty. Adjusting for non-teaching staff only 

reduces this ratio to about three.  

Analysis of the human-capital model 

 Romer’s model of section 4.1 ignores some important questions that are treated 

more carefully in the research literature. In particular, treating the level of education 

as an exogenous variable makes exogenous one of the central decisions of the model. 

Romer’s simplification is analogous to the Solow model’s assumption of a constant 

saving rate, which makes the accumulation of physical capital exogenous rather than 
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responsive to economic incentives. A more complete specification of the model would 

allow individuals to decide how much human capital to accumulate based on the rate 

of return to education, just as agents in the Ramsey model decide on their saving (ac-

cumulation of physical capital) based on the return to capital and their desire for 

smooth consumption and for consumption now rather than later.  

 Romer begins the exposition with the production function described by equation 

(4.1). Note that labor input seems to be missing from the production function here. 

This apparent anomaly is resolved by equation (4.4), which expresses the amount of 

human capital H(t) as the product of the number of workers L(t) and a productivity 

factor G(E) that is related to the amount of education the representative worker has 

received. Romer then makes the simplifying assumption that each additional year of 

education adds the same proportional amount to a worker’s productivity, making 

productivity an exponential function of education as shown by equation (4.6). 

To begin the analysis, we must derive the intensive form of the production function 

(4.1). Since H(t) has taken the place of L(t) in the production function, it makes sense 

to redefine y and k as 

( ) ( )
( )

( ) ( ) ( ) ( ) ( )

Y t Y t
y t

A t H t A t G E L t
   (4) 

and 

( ) ( )
( ) .

( ) ( ) ( ) ( ) ( )

K t K t
k t

A t H t A t G E L t
   (5) 

With these definitions, we can write the intensive form of the Cobb-Douglas produc-

tion function as 

( ) ( ) .y t k t   (6) 

 If the level of education E per worker is constant, as Romer assumes and as it 

would be in a steady state; A and L are assumed to grow at constant rates as given by 

his equations (4.3) and (4.5); thus the denominator of (4) and (5) grows at the constant 

rate n + g, just as in the Solow model. It follows that the analysis of the intensive-form 

model is identical to that of the Solow model from Chapter 1. We can move immedi-

ately to write the unique, steady-state level of k as 

1

1

* ,
s

k
n g

 
  

   
 (7) 
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as shown by Romer on page 152. From (6), the corresponding steady-state level of y is 

just 

1

* .
s

y
n g



 
  

   
 (8) 

 In the steady state, y is constant at the level shown in equation (8), so its numerator 

and denominator must be growing at the same rate. With G(E) constant, Y must be 

growing at rate n + g corresponding to growth in A and L, and Y/L must grow at rate 

g in the steady state. Unsurprisingly, the steady-state properties of the model are en-

tirely Solovian. The presence of G(E) simply scales the level of output per worker (for 

given y*) by a constant amount that depends on the equilibrium amount of education 

per worker. 

Output per person vs. output per worker 

 In our analysis of the human-capital model so far, we have treated education as 

though it were free. People receive an amount E without paying for it by forgoing 

consumption of goods, labor effort, or investment in physical capital. Not surprisingly, 

our results suggest that more education is always better—why should we stop increas-

ing a variable that gives us higher income and costs us nothing? But of course educa-

tion is not really free. It consumes resources (mainly teacher and student time) that 

could otherwise be used to produce consumable output. 

 Romer incorporates the cost of education in his model by recognizing that time 

spent as a student is time that you are not producing output. Therefore, we must dis-

tinguish carefully between output per worker (which is the Y/L value we discussed 

above), and output per (adult) person, which he denotes by Y/N. The adult population 

N is larger than the labor force L by the number of students.  

 We can tell an intuitive story about why the effect of an increase in education on 

Y/N is going to be more complicated than the effect on Y/L. We assume that more 

education makes workers more productive, so increased education must lead to higher 

output per worker in the steady state. However, more education also means that a 

smaller share of the population is working in the steady state. Since students do not 

produce anything, this means that the higher output of each worker is, at least partially, 

offset by the smaller number of workers. Romer analyzes this tradeoff beginning on 

page 153. 

 We are interested in looking at the behavior of Y/N and we know something about 

the behavior of Y/L, so it makes sense to start by noting that 

.
Y L Y

N N L
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In the steady state, we know from (8) that Y/L grows at rate g along with A and that 

the level of its growth path is proportional to G(E). Thus, we need an expression for 

L/N, the share of the population that is working. This can be a little tricky if people 

live infinitely long, as in the Ramsey model, so Romer adopts a somewhat more real-

istic assumption: that everyone lives T years with the first E years devoted to education 

and the last T  E years to working. 

 It might seem like we could then simply write down the ratio of working to total 

population as (T  E)/T, since that is the share of each person’s life that he or she 

works. However, we can only do this if the population is not growing (n = 0). In a 

growing population, the young cohorts that are in education will be larger than the 

corresponding cohorts that are working, so the share of the population working will 

be somewhat smaller. 

 In order to calculate L/N for a growing population, we need to look explicitly at 

cohort size. Romer denotes the flow of people born at time t by B(t). If the population 

is to grow at rate n with a fixed life span, then the flow of births must grow at rate n as 

well. Using our standard formula for continuous-time growth,  

( ) (0) .ntB t B e  (9) 

 We can calculate the population at time t by adding up the sizes of all cohorts born 

between t  T and t. We are working in continuous time, so this is an integral rather 

than a traditional summation. Using integration to add up the flow of births from t 

back to t  T gives 

0
( ) ( ) .

T

N t B t d


     (10) 

This is the first part of Romer’s equation (4.8). The B(t  ) inside the integral is the 

flow of births that happened  periods before time t. The population at time t includes 

those born between zero and T years before t, so integrating from  = 0 to  = T adds 

up the cohorts that are still alive at t.  

 Applying equation (9) to period t   gives B(t  ) = B(0)en(t  ) = B(t)en. Romer 

makes this substitution to get the second line of his equation (4.8). To get the final line, 

he uses the rules of integrals to evaluate the integral expression. Because we have not 

stressed the rules of integration, a more detailed explanation is appropriate here. 

 Recall that integration involves “anti-differentiation,” finding the function whose 

derivative equals the integrand. In this case, the integrand is B(t)en and we are inte-

grating with respect to .  We can simplify the integral by noticing that B(t) does not 

depend at all on , so it can be treated as a constant and brought outside the integral 

sign: 
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( ) ( ) .n nB t e d B t e d        (11) 

Notice that I have temporarily suppressed the limits of integration in equation (11) and 

treated it as an “indefinite integral.” We shall consider the limits of integration in a 

moment. 

 Remember that the derivative of the exponential function is especially simple: 

( )
.

ax
axd e

ae
dx

  

The anti-derivative is likewise simple, 

1
,ax axe dx e

a
  

or, in this case, with a = –n and x = , 

1
.n ne d e

n

       (12) 

 Equation (12) gives us the indefinite integral of the function. To calculate the def-

inite integral over the range  = 0 to  = T we subtract the value of the right-hand side 

of (12) at  = 0 from the value at  = T. Thus, 

 0 0

0

1 1 1 1
.

nT
T

n nT n nT e
e d e e e e

n n n n


     



   
          

   
  (13) 

Multiplying (13) by the B(t) term that we took outside the integral in equation (11) 

yields the final expression that Romer arrives at in his equation (4.8). 

 The analysis of equation (4.9) to get the size of the labor force L(t) is exactly anal-

ogous. The people in the labor force at time t are the members of the population more 

than E years old, since people spend their first E years in education. Therefore, people 

born between t  E and t are in school and people born between t  T and t  E are 

working. Equation (4.9) differs from equation (4.8) only in the lower limit of integra-

tion:  ranges from E to T rather than from 0 to T. 

 Having derived the ratio of L to N in equation (4.10), Romer then proceeds to show 

in a straightforward way how output per person behaves. The principal conclusion 

was noted above. Increases in education have ambiguous effects on output per person. 

They increase output per worker but decrease ratio of workers to persons. 
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F. Suggestions for Further Reading 

General texts on modern growth theory 

Barro, Robert J., and Xavier Sala-i-Martin, Economic Growth, 2nd ed., Cambridge, 

Mass.: MIT Press, 2004, Chapters 4 through 7. 

Acemoglu, Daron, Introduction to Modern Economic Growth, Princeton, N.J.: Princeton 

University Press, 2009. (An encyclopedic and highly mathematical new textbook 

on growth theory.) 

Jones, Charles I., and Dietrich Vollrath, Introduction to Economic Growth (New York: 

W.W. Norton, 3rd ed., 2013). (A much simpler mathematical treatment.) 

Selected seminal papers in modern growth theory 

Romer, Paul M., “Increasing Returns and Long-Run Growth,” Journal of Political Econ-

omy 94(5), October 1986, 10021037. (The paper that is generally regarded as hav-

ing started it all.) 

Lucas, Robert E., Jr., “On the Mechanics of Development Planning,” Journal of Mon-

etary Economics 22(1), July 1988, 3–42. (Lucas’s Nobel address focused on a two-

sector model with human capital.) 

Romer, Paul M., “Endogenous Technical Change,” Journal of Political Economy 98(5), 

October 1990, Part II, S71–S102. (The Paul Romer model closest to the model in 

David Romer’s section 3.5.) 

Aghion, Philippe, and Peter Howitt, “A Model of Growth Through Creative Destruc-

tion,” Econometrica 60(2), March 1992, 323–351. (A seminal paper in the neo-

Schumpeterian strain of endogenous growth models.) 

Grossman, Gene M., and Elhanan Helpman, Innovation and Growth in the Global Econ-

omy (Cambridge, Mass.: MIT Press, 1991). (A book elaborating on a variety of 

endogenous growth models in an international context.) 

Rebelo, Sergio, “Long-Run Policy Analysis and Long-Run Growth,” Journal of Politi-

cal Economy 99(3), June 1991, 500–521. (One of the most often cited AK models.) 
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