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A. Topics and Tools 

 One of our goals in approaching macroeconomic analysis is to make sure that our 

models are well-grounded in microeconomic behavior. The Solow model’s assump-

tion that people save a constant share of their income is exactly the kind of ad hoc 

assumption that we are trying to avoid. A reasonable theory of saving should allow 

people to decide how much of their income to save and consume. This choice should 

be influenced by such factors as the real interest rate, which is the market’s incentive 

for people to save, and the relationship between their current income and their ex-

pected future income. 

 In microeconomics, we model saving and consumption choices using utility max-

imization. The Ramsey-Cass-Koopmans (hereafter abbreviated to just Ramsey) and 

Diamond growth models, which we study here in David Romer’s Chapter 2, use the 

standard microeconomic theory of saving to make the saving rate endogenous. Be-

cause saving is a dynamic decision depending on past, present, and future income, we 

will need some new tools to analyze it. We use (at a somewhat superficial level) tools 

of dynamic optimal control theory to examine the household’s optimal consump-

tion/saving decision over time.  

 Most macroeconomic models being developed today begin from the Ramsey/Di-

amond framework of utility maximization, varying mainly in whether time is contin-

uous (as in Ramsey) or discrete (as in Diamond) and whether households have infinite 

(Ramsey) or finite (Diamond) lifetimes. 

 Endogenous saving adds considerable complication to the dynamics of growth. 

The marginal net rate of return on capital (the equivalent of the real interest rate in this 

model) depends on the capital-labor ratio. As the capital-labor ratio changes during 

convergence toward the steady-state, the corresponding change in the return to capital 

and the real interest rate will cause changes in the saving rate. In order to track the 

dynamics of two variables as we move toward equilibrium, we will need a two-dimen-

sional “phase plane” in which two variables simultaneously converge. Moreover, the 

nature of the equilibrium in this model is a “saddle point,” which has interesting dy-

namic properties. 

 Chapter 2 is one of the most challenging chapters in the Romer text. Don’t be 

discouraged if you don’t understand everything immediately. Rely on a combination 

of the text, class lectures, and this coursebook chapter to help you achieve a working 

understanding of the model. As always, don’t hesitate to ask for help! 
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B. Introducing Dynamic Utility Functions 

 Just as in microeconomics, we use utility functions to quantify people’s prefer-

ences: what they like and what they dislike. The most common application of utility 

functions in microeconomics is to analyze choices between two different goods, say, 

asparagus and Brussels sprouts. In macroeconomics, we usually aggregate all goods 

together, so we do not worry much about choices among goods. Instead, we use utility 

functions to model preferences about generic “goods” consumed at different times and 

about preferences for leisure relative to these goods. The budget constraint in such 

models reflects the need to sacrifice leisure time in order to work and earn wages to 

purchase goods. (Or, recalling Jane in the simple one-person economy of Chapter 1, 

sacrificing leisure in order to produce the goods directly.) 

 In the growth models we shall study in this course, we take the labor/leisure deci-

sion as given—labor supply is perfectly inelastic—and focus only on the former deci-

sion: when to consume the goods that our lifetime worth of income allows. Should we 

consume a lot now and borrow against future earnings? Or should we be frugal now 

and save in order to consumer more in the future? This is the essential decision on 

which we focus. 

 The utility functions that we use embody three basic preferences that we assume 

all individuals or households have: 

 People prefer more consumption to less, but at a decreasing rate. In other 

words, they never become satiated with consumption goods, though the “mar-

ginal utility” of additional units of goods declines as they consume more at any 

point in time. 

 People prefer consumption sooner rather than later. Consumption further in 

the future gives people less utility than consumption now or soon. One can 

attribute this property to people’s innate impatience or, perhaps, to the “bird 

in the hand” phenomenon that something may happen to sidetrack future con-

sumption but present consumption is certain. In our utility functions, the pa-

rameter  (Greek letter rho) will be used to measure impatience. People with 

a higher value of  have stronger preferences for current over future consump-

tion. 

 People prefer a smooth consumption path over time rather than a lumpy 

one. This follows from the assumption that marginal utility of consumption 

declines. It will always benefit households to shift consumption from high-

consumption years (where marginal utility is low) to low-consumption years 

(where it is high). The result is a preference for a smooth path of consumption 
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over time. The parameter  (Greek letter theta) will measure the strength of 

people’s preference for smooth consumption. Those with a high  want very 

smooth consumption and are not very willing to deviate from it; those with a 

low  are more willing to substitute consumption across time.  

 

 The innate conflict between these last two preferences motivates the tradeoffs that 

we study here. The preference for current over future consumption would, if it were 

the only thing that mattered, cause people to consume their entire lifetime income right 

now. But this would lead to a very non-smooth consumption path, with extremely 

high consumption now and zero consumption in the future. Thus, the preference for 

smooth consumption prevents households from overdoing their preference to consume 

sooner. 

 Going the other direction, if consumption smoothing were the only thing that mat-

tered, households would always consume at the same level at every moment in time. 

But given that the prefer consuming sooner rather than later, that is unlikely to be an 

optimal decision either. 

 In this chapter, we introduce a utility function called the constant-relative-risk-

aversion (CRRA) function that embodies these three properties of preferences. The 

next section discusses in more detail how we incorporate the preference for sooner 

consumption into the utility function through discounting. 

C. Discounting the Future in Discrete and Continuous 

Time 

The idea of discounting 

Introductory economics teaches you that comparing dollar values at different 

points in time requires discounting—expressing future and past payments in terms of 

comparable present values. For example, if the market interest rate at which you can 

borrow or lend is 10 percent, then you get the same consumption opportunity from 

receiving $100 today as from receiving $110 dollars one year from today.  

 Table 1 shows this by examining four cases in a 2  2 table. The top-left and bot-

tom-right cells show what happens if the individual consumes the income when it is 

received; the top-right and bottom-left cells illustrate the individual’s ability to perform 

intertemporal substitution through borrowing or saving at an interest rate of 10 per-

cent.  
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The upper row shows your options if you receive $100 now. If you wish to con-

sume now, you simply spend the $100. If you would rather spend the money next year, 

you lend the $100 out at 10 percent interest. Next year you receive $110 in principal 

and interest payments and spend it on $110 worth of goods.  

 Table 1. Consumption opportunities 

 The lower row shows that you get the same consumption options from receiving 

$110 next year. If you wish to consume next year, you simply spend the money when 

it is received. If you wish to consume today, you borrow $100 and spend it today, then 

repay the principal and interest next year when you receive $110. Thus, regardless of 

which of these payments is to be received, you have identical consumption options: 

consume $100 today or $110 next year. Thus, we say that these two payments have an 

identical present value of $100.
1

 

We can generalize the concept of present value to allow payments to be made two 

or more years in the future. In doing so, we must take account of the compounding of 

interest—the fact that in future years you can earn interest not only on your principal 

but also on interest payments that have already been received. Suppose first that inter-

est on loans is paid once per year and, again, that the interest rate is 10 percent per 

year. Each year that you lend, the value of your money increases by a factor of 1.10 

or, more generally, by 1 + r where r is the interest rate. How large a payment made 

two years from today would give you consumption opportunities equivalent to those 

from a payment of $100 today? If you received $100 today, you could lend it out for 

the first year and receive $110 back in one year ($100  1.10 = $110). You could then 

lend out $110 for the second year and receive $121 back two years from today ($110  

1.10 = $121). Thus, $121 two years from now has the same present value as $100 

today. 

                                                      
1

This example assumes that you can borrow and lend freely at a uniform interest rate. Calcula-

tion of present values is more complicated if consumers must pay a higher interest rate when 

they borrow than they receive when they lend, or if consumers are “liquidity constrained” and 

cannot borrow at all. 

 
 

 
Consume $100 today 

 
Consume $110 next year 
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Consume $100 today 
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Receive $110 next year 
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In terms of a mathematical formula, the future payment Q is related to its present 

value PV by Q = PV  (1 + r)n if the payment is received n years in the future. Dividing 

both sides of this equation by the expression in parenthesis gives us the familiar dis-

crete-time present-value formula: 

.
(1 )n

Q
PV

r



 (1) 

 We can use equation (1) to verify both of our examples above. In the one-year 

example, $100 = $110/(1.10)1, so the present value of a $110 payment received one 

year in the future is $100 when the interest rate is 10 percent. For the two-year exam-

ple, $100 = $121/(1.10)2, so the present value of a $121 payment two years in the 

future is $100 when the interest rate is 10 percent. 

Frequency of compounding and present value 

Equation (1) is based on the assumption that interest is paid (or “compounded”) 

once per year. Would we get the same result if interest were paid each quarter or each 

month rather than once per year? No. The more frequently interest is compounded, 

the faster your money grows. This is exactly the same process as the compounding of 

growth rates discussed in the previous chapter. 

Suppose that the annual interest rate is 10 percent, but that this is paid quarterly so 

that you receive ¼  10 percent = 2.5 percent each quarter. If you lend $100 on January 

1, then on April 1 you will have $102.50, the $100 principal and the first $2.50 interest 

payment. Lending the entire $102.50 for the second quarter will give you $102.50  

1.025 = $105.0625 on July 1. By the end of a year, you will have $100  (1.025)4  

$110.38, rather than the $110 you would have if your interest was compounded annu-

ally.
2

 

We can generalize this example into a formula as well. If the annual interest rate 

is r and interest is compounded k times per year, then the present value of a payment 

to be received in n years is 

1
.

(1 )
k kn

k

Q
PV

r



 (2) 

                                                      
2

In the United States, financial institutions are required to disclose “annual percentage rates” 

on loans, to make it easier for consumers to compare interest rates on loans with different com-

pounding intervals. The APR on the quarterly-compounded loan in the example is 10.38%, the 

rate on an equivalent annually compounded loan. 
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Because the present-value formula depends on how often interest is compounded, 

we need to adopt a convention about which compounding interval to use. In discrete-

time models, we usually assume that interest is paid once per period and express our 

interest rates in “percent per period.”
3

 This assumption means that we can use equa-

tion (1) to calculate present value. 

An alternative assumption that is common in continuous-time models is that in-

terest is continuously compounded. This amounts to a limiting case in which interest 

accrues at each instant, with each (infinitesimally small) payment of interest beginning 

to earn interest immediately. Mathematically, we can derive the continuous-com-

pounding present-value formula by taking the limit of equation (2) as ,k   i.e., as 

the number of times interest is compounded per period gets very large. 

Although this seems like it would complicate the mathematics, it can be shown 

that 

1
lim lim ,

(1 )

rn

k kn rnk k
k

Q Q
PV Qe

r e



 
  


 (3) 

where e is the exponential constant. Because the exponential function is much easier 

to work with in mathematical applications than the function in equation (1), many 

economic models, including almost all continuous-time models, use the formula in 

equation (3). Summarizing equation (3) in words, the present value of a payment is 

equal to the amount of the payment times e to the power of minus the interest rate (per 

period) times the number of periods in the future the payment is to be received.  

 We can see the similarity of equation (3) to the continuous-time growth formula 

given by equation (2) of Chapter 2 more easily if we solve equation (3) for Q to get Q 

= PV ern. This shows that for a given present value (amount invested) PV, the future 

value grows exponentially at continuous rate r over time. 

                                                      
3

In a theoretical model, we do not usually specify what the length of the period is. Since real-

world interest rates are universally quoted in “percent per year,” it may be most comfortable to 

think of a period as being a year. However, many of the discrete-time models we develop may 

be more realistic if the time period is shorter or longer. When applying the models to a time 

period other than a year, it is important to remember that interest rates (and also inflation rates 

and growth rates) must be expressed in terms of “percent per period” rather than the more-

familiar “percent per year.” 
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Discounting money vs. discounting utility 

The discussion above is framed entirely in terms of discounting a monetary pay-

ment. This monetary payment is worth less at a future date than it is today because 

you can earn interest on money that you receive today if you choose not to spend it 

immediately. Economists also use a formula that looks similar to equation (3) to dis-

count future utility, arguing that utility received in the future is worth less than utility 

received now. What is the basis for using a formula like this to discount utility? 

The discounting of utility cannot be justified in the same way as the discounting 

of payments because one cannot borrow or lend utility in a market. Suppose that for 

some reason you are extremely happy today, but you would rather “save” some of this 

happiness for tomorrow. There is no market in which you can lend today’s happiness 

to save it for tomorrow.
4

 Thus, the discounting of future utility relative to present util-

ity cannot be based on a market argument similar to that used for discounting future 

money payments. 

Rather, the basis for discounting utility is the observation that most people, if given 

a choice, seem to prefer to enjoy something now rather than in the future if all else is 

equal. Suppose, for example, that someone offers you an all-expenses-paid Hawaiian 

vacation, to be taken whenever you wish. You cannot sell this vacation to anyone else, 

nor can you “redeem” it for cash, so there is no way to earn interest on the vacation 

by choosing to take it earlier or later. Our observation above about human behavior 

claims that most people would prefer to take the vacation this year rather than, say, 

ten years from now.
5

 

In order to capture this assumed preference for present over future utility, we dis-

count future utility at a constant rate to its “present-value equivalent” whenever the 

agents in our model must compare utility at different points in time.
6

 The “rate of time 

discount” (which takes the place occupied by the rate of interest in monetary present-

value calculations) is often represented by the Greek letter . In discrete-time models, 

                                                      
4

You may, of course, be able to lend money today by forgoing today’s purchases, which will 

give you money to make more purchases tomorrow. If purchases give you utility, then you can 

exchange current utility for future utility by this indirect means. Our intertemporal equilibrium 

consumption and saving decision relies on this kind of substitution. But this is not the same as 

being able to lend or borrow actual utility. 
5

Recall the “all other things equal” assumption. This assumption rules out “I’m too busy this 

year but I’ll have lots of free time ten years from now” and other similar cases. 
6

 The assumption of a constant rate of discount makes the analysis easy, but is not necessarily 

realistic. For example, Laibson (1997) proposes “hyperbolic discounting,” in which households 

discount all future time more heavily relative to the present than they do points in the future 

relative to each other. However, Barro (1999) shows that hyperbolic discounting has only mi-

nor effects on the simple growth models that we discuss here. 
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we usually use a formula similar to equation (1). For example, if we want to represent 

the lifetime utility (U) of an individual who lives for two periods and gets utility u(Ct) 

from consumption in period t, we might write 

1 2

1
( ) ( ).

1
U u C u C 


 (4) 

Romer’s equation (2.43) is an example of how equation (4) can be applied using a 

specific form for the u(Ct) function. If we have more than two periods, or even an infi-

nite number of periods, we can generalize equation (4) as
7

 

0

1
( ).

(1 )
tt

t

U u C







  (5) 

Adding up values in continuous time using integrals 

In continuous time, we use an equation that differs from equation (5) in two ways. 

First, we use an exponential discounting expression similar to the one shown in equa-

tion (3). Second, because time is continuous we cannot simply sum up utility values 

corresponding to all the points in time—there are infinitely many such points. Instead, 

we must use the concept of an integral, which is drawn from basic calculus, to add up 

utility over time. 

To see how integrals correspond to summations, think about adding up the 

amount of water flowing down a river during a day. There is a rate of flow at every 

moment of time, call it w(t), measured in gallons per hour. But how are we to add up 

the infinite number of momentary flows that could potentially be observed at the infi-

nite number of moments in the day? 

One way would be simply to measure the flow (expressed in gallons per hour) at 

the beginning of the day w(0) and multiply it times the number of hours in the day 

(24). This would be an accurate measure only if the rate of flow at the beginning of the 

day was exactly the average rate over the entire day. A better approximation could 

probably be achieved by taking two measurements, one at the beginning of the day 

w(0) and one in the middle w(12), multiplying each by the number of hours in the half 

day (12) and summing: [w(0)  12] + [w(12)  12]. Alternatively, we could measure 

every hour, multiplying each measurement by one (the number of hours in an hour), 

and adding up, or we could measure every minute, multiply each reading by 1/60 (the 

                                                      
7

Equation (5) is the summation of an infinite number of terms. Depending on the path over 

time of u(Ct), the value of this summation may be infinite or finite. We will only deal with 

problems in which the sum is finite. This requires that the (1 + )t term in the denominator get 

large faster than the u(Ct) term in the numerator. 
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number of hours in a minute) and add them up. Mathematically, measuring k times 

per hour would give us 

24

1

1

( ) .
k

i
k k

i

W w


   (6) 

The most accurate of all would be the (impractical) limiting case where we would 

measure w continuously and add up the infinite number of such readings. This is what 

an integral does.
8

 We define the integral by 

2424
1

0
1

( ) lim ( ) .
k

i
k kt

k i

w t dt w


 

   (7) 

The “limits of integration” at the bottom and top of the integral sign in equation (7) 

specify the values of the variable t over which the summation is to occur, w(t) is the 

expression to be summed, and the dt term on the end indicates that it is that variable t 

that varies from 0 to 24. 

Although taking an infinite number of readings is obviously impossible in practice, 

integrals such as equation (7) can often be evaluated in theoretical models if we can 

represent w(t) by a mathematical function. For suitable functions, we can find a repre-

sentation for the integral expression by finding the function W(t) whose derivative is 

w(t) and calculating W(24) – W(0). Integration is the inverse operation of differentia-

tion, so W(t) is computed by finding the “anti-derivative” of w(t). Any introductory 

calculus book can give you more details about integrals. However, we shall rarely be 

concerned with actually evaluating integrals, so we do not pursue these details here. 

Discounting utility in continuous time 

We can use the concept of the integral to add up the discounted values of momen-

tary utility over a continuous interval. Suppose that utility at every moment depends 

on consumption at that moment according to the function   .u C t    If the rate of time 

preference is , then the value of utility at t discounted back to the present (t = 0) is 

 te u C t    . Adding up this discounted utility for each moment from the present into 

the infinite future yields 

 
0

( ) .t

t
U e u C t dt





   (8) 

                                                      
8

 Those who have studied the fundamentals of calculus will recognize the successive approxi-

mations above as the Riemann sums that are used in the formal definition of the integral. 
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Equation (8) combines the infinite-horizon summation in equation (5) with the 

continuous-time discounting formula of equation (3). Except for Romer’s adjustment 

for the size of household (which is discussed below), it is equivalent to Romer’s equa-

tion (2.2), with which he begins the analysis of the Ramsey-Cass-Koopmans model. 

D. Constrained Maximization: The Lagrangian 

As discussed in the previous chapter, setting the first derivative to zero can usually 

be used to determine the value(s) at which a function achieves a maximum or mini-

mum value. However, there are many problems in economics where individuals are 

limited in the values of the variables they can choose in order to maximize utility or 

profit. Households and firms must often choose among the values that satisfy some 

economic constraint, such as the budget constraint that limits choices in utility maxi-

mization. Instead of looking for a general maximum, which can be done with the sim-

ple first-derivative rule, we must look for the maximum among only those values of 

the variables that fulfill the constraint. 

The method of Lagrange multipliers is used to find the maximum or minimum of a 

function subject to a constraint. Courses in microeconomics (such as Reed’s Econ 313) 

often spend considerable time solving Lagrange-multiplier problems. We shall intro-

duce the concept briefly to make understanding Romer’s Chapter 2 easier, but we will 

devote little time to actual problem solving. 

The general objective of a constrained maximization problem is to choose the val-

ues of some variables, say, x1 and x2, in a way that maximizes a given function g(x1, x2) 

subject to the constraint that a(x1, x2) = c. For example, g(x1, x2) could be a utility func-

tion with x1 and x2 being the levels of consumption of two goods, while a(x1, x2) is the 

cost of consuming x1 and x2 and c is the consumer’s income. 

The theorem that underlies the method of Lagrange multipliers asserts that a max-

imum or minimum of g(x1, x2) subject to the constraint that a(x1, x2) = c occurs at the 

same values of x1 and x2 at which there is an unconstrained maximum or minimum value 

of the Lagrangian expression L(x1, x2, )  g(x1, x2) + [c  a(x1, x2)], where  is called a 

Lagrange multiplier. Maximization of the Lagrangian is performed by the usual 

method of unconstrained maximization: setting the partial derivatives equal to zero.
9

  

                                                      
9

As with unconstrained problems, either a maximum or a minimum can occur where the partial 

derivatives are zero. For the remainder of this section we will focus on maximization problems, 

since that is the nature of the problems in Chapter 2. In general, to determine whether a given 

point is a maximum or minimum one must examine second-order conditions. We will not 
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For the Lagrangian, which is a function of three variables, we maximize with re-

spect to x1 and x2 and also with respect to , giving us three partial derivatives to set to 

zero. This leads to a system of three equations that we can attempt to solve for x1, x2, 

and . (These equations are called “first-order conditions” for a maximum.) The values 

of x1 and x2 that we obtain from this solution are the ones that maximize the function 

subject to the constraint. The value of  is interpreted as the “shadow price” of the 

constraint. In the constrained utility-maximization problem discussed above,  is the 

marginal utility of additional income—the improvement in the objective (utility) func-

tion that would be obtained from a one-unit relaxation of the (budget) constraint. 

One of the partial derivatives that we set equal to zero is the partial derivative with 

respect to . A closer look at this derivative shows the logic underlying the method of 

Lagrange multipliers: L/ = c  a(x1, x2). Setting c   a(x1, x2) = 0 is equivalent to 

enforcing the budget constraint a(x1, x2) = c. Since L/ = 0 is one of the three first-

order conditions that we solve to get the values of x1 and x2, we are assured that these 

values lie on the budget constraint. 

A straightforward example of a Lagrangian is Romer’s equation (2.50), which is 

the consumer’s maximization problem in the Diamond model. The two first-order 

conditions shown in equations (2.51) and (2.52) result from setting equal to zero the 

partial derivatives of the Lagrangian with respect to the two choice variables, C1t and 

C2t + 1. The third first-order condition, from the partial derivative with respect to the 

Lagrange multiplier , is not explicitly shown. It replicates the constraint (2.46). 

Romer’s equation (2.17), which is the consumer-choice problem for the Ramsey 

model, is a more complicated application of a Lagrangian. The objective function be-

ing maximized is an integral representing the discounted value of utility. The con-

straint is the complicated expression in brackets, which says that the present value of 

lifetime income equals the present value of lifetime consumption. The Lagrangian is 

maximized with respect to  and with respect to all the (infinite set of) values of c(t). 

While the method of Lagrange multipliers is very useful in economic analysis, we 

will spend no more time on it here. Interested students should consult an advanced 

microeconomics text or the relevant chapters of a book on mathematical economics 

such as Chapter 12 of Alpha Chiang, Fundamental Methods of Mathematical Economics 

3d ed. (New York: McGraw-Hill, 1984). 

                                                      
discuss the second-order conditions of Lagrangian problems; assumptions about the parameters 

of our models assure that the second-order conditions for a maximum are fulfilled for the prob-

lems in Chapter 2. 
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E. Using Indifference Curves to Understand 

Intertemporal Substitution 

 We are most comfortable using indifference curves to analyze consumption 

choices, and this tool can easily be used to explain the intertemporal substitution 

model and consumption smoothing. Of course, relying on indifference curves allows 

us to examine only two dimensions at a time, so we can apply this method only to a 

two-period model. 

 Suppose that utility is given by 

 

    1 2 .U u C e u C   

 

Even though the two-period model requires that we work in discrete time, we shall use 

continuously compounded discounting to retain more symmetry with the Ramsey 

framework. With continuous compounding of interest, the individual’s budget con-

straint is 

 

 
1 2 1 2 ,r rW e W Y C e C      

 

where W1 and W2 are wage earnings in periods one and two. We are taking labor sup-

ply to be perfectly inelastic and assuming that the household is always able to work its 

desired number of hours, so wage earnings are fixed. Thus, from the consumer’s stand-

point, Y and r (the real interest rate, reflecting the rate at which present goods can be 

exchanged for future goods) are given,  is a parameter of the utility function, and C1 

and C2 are the individual’s constrained choices. 

 Consider first the consumer’s budget constraint. We will plot C1 on the horizontal 

axis and C2 on the vertical axis, so we begin by for solving the budget constraint for C2 

to get 

 

  1
2 1 .r

r r

CY
C e Y C

e e 
     

 

This is a straight line intersecting the vertical axis at 
re Y  (and the horizontal axis at Y) 

and having a slope equal to – e r. 

 Next consider the consumer’s indifference curves. These will not be linear; their 

exact form depends on the functional form of the function u(). The properties assumed 
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for utility functions assure us that u > 0 and u < 0—marginal utility is positive (non-

satiation) and diminishing. An indifference curve corresponding to a given level of 

utility U0 is defined as the set of (C1, C2) for which  

 

    0 1 2 .U U u C e u C    

 

We are interested in the slope of the indifference curve, which is the change in C2 that 

leaves utility unchanged (dU = 0) following a unit change in C1: 

 

 2

1 0.dU

dC

dC


 

 

 Since (without assuming a specific form for the utility function) we cannot solve 

for C2 here as an explicit function of C1 and U0, we can only obtain the slope of the 

indifference curve by “implicit differentiation.” We begin by taking the “total differen-

tial” of the utility function: 

 

    1 1 2 2.dU u C dC e u C dC    

 

This equation says that the change in utility (dU) equals the change in consumption in 

period one (dC1) times the marginal utility of a unit of C1 (given by  1u C ) plus the 

change in consumption in period two (dC2) times the marginal utility of a unit of C2 

(which is  2u C ). Utility is not changing as we move along an indifference curve, so 

we set dU = 0 and solve for dC2/dC1: 
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 As we move from lower right to upper left in the positive quadrant, C1 gets smaller 

and C2 gets larger. The negative second derivative of the utility function assures us that 

u (C1) gets larger as C1 gets smaller and u (C2) gets smaller as C2 gets larger, so 

u (C1)/u (C2) increases as we move from lower right to upper left: the indifference 

curves get steeper and are convex in the usual way. 

 We know that (barring a corner solution, which is improbable here) the consumer 

maximizes utility by consuming at a point where an indifference curve is tangent to 
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her budget constraint. This tangency occurs at a point where the slope of the indiffer-

ence curve equals the slope of the budget constraint. Recall that the slope of the budget 

constraint is –er, so the mathematical equilibrium condition is  
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This is the basic first-order condition for utility maximization in the two-period model. 

The relationship between C1 and C2 on the left-hand side clearly depends on the relative 

size of r and  on the right. We can establish more intuition about the consumer’s 

choices by considering the three cases r = , r > , and r < . 

 Consider first the case where the rate of return on capital (real interest rate) r is 

exactly equal to the consumer’s marginal rate of time preference . In this case 

,re e    so the tangency condition becomes u (C1)/u (C2) = 1, or u (C1) = u (C2). 

Because u < 0, u (C1) = u (C2) if and only if C1 = C2, which means in geometric terms 

that the tangency between the indifference curve and the budget line must line on the 

45 line through the origin. In economic terms, with the interest rate equals the rate of 

time preference, an individual will choose equal consumption in both periods: she will 

smooth consumption. Figure 1 shows this consumer equilibrium situation at point a. 

 Intuitively, the interest rate is the reward to saving offered by the market and the 

rate of time preference is the reward demanded by the consumer to justify postponing 

consumption. If the two are exactly in balance, then the consumer chooses future con-

sumption equal to present consumption.  

 If, further, the consumer’s income in the two periods is equal, she will choose zero 

saving. If she has higher income in one period than the other, she will save in the 

higher-income period and dissave in the lower-income period to smooth her consump-

tion perfectly.  
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 We have established that a perfect consumption-smoothing outcome maximizes 

utility when r = . What happens when r >  or r < ? Once again, we can answer 

these questions easily with the indifference-curve diagram.  

 If r > , then 
re e  and the budget constraint is steeper than the indifference curve 

when C1 = C2. (In Figure 1, twist the linear budget constraint to make it steeper.) This 

means that the tangency must occur at a point on the budget constraint above and to 

the left of point a in Figure 1, where C1 < C2. In terms of the mathematical equilibrium 

condition, 
  1,
r

e


  so u (C1)/u (C2) must be greater than one and u (C1) > u (C2). 

With marginal utility decreasing in consumption, u (C1) > u (C2) if and only if C2 > 

C1.  

 Intuitively, when r > , the consumer chooses more consumption in the future 

than in the present. She wants a consumption path that rises over time because the 

market reward to saving (r) exceeds her innate desire to consume early (). If her in-

come is the same in both periods, she will choose positive saving in period one. (How-

ever, it is important to note that if her income in period two is considerably higher than 

period one she may dissave in period one, although her consumption in period two 

will still be higher than in period one.) 

 The exact opposite happens if r < . The budget constraint is flatter than the indif-

ference curves at C1 = C2, so the tangency occurs below and to the right of Figure 1’s 

C1 

C2 

slope = –e r 

C1 = C2 

slope at (C1 = C2) = –e  

C* 

C* 

a 

Figure 1. Consumer equilibrium when r =  



 

3 – 17 

point a, where C1 > C2. Mathematically, 
  1,
r

e


 so at equilibrium u (C1) > u (C2), 

which implies C2 < C1. In terms of intuition, when r < , the market reward to post-

poning consumption falls short of the consumers innate desire for current consump-

tion, thus she chooses higher consumption now and lower consumption in the future. 

If her income is equal in both periods, she will dissave (borrow) in the current period 

to finance high current consumption at the expense of lower future consumption when 

she must pay off her debt in the future. (Once again, if her income were enough lower 

in the future period, she might actually choose positive saving in period one, but she 

will not save enough to smooth her consumption perfectly.) 

F. Understanding Romer’s Chapter 2, Part A 

As noted above, Chapter 2 is one of the most mathematically difficult in Romer’s 

text. This section and the one that follows are intended to facilitate your understanding 

of the mathematically challenging sections. 

Household vs. individual utility 

The basic setup of Romer’s equation (2.2) was discussed above in the context of 

continuous-time discounting. However, one aspect of the equation was ignored there: 

the presence of the L(t)/H term. Writing the utility function in the way that Romer 

does implies that  u C t    is to be interpreted as the utility gained at time t by one 

individual family member, but that decisions are made in a way that maximizes total 

household utility. L(t) is the number of people in the economy and H is the (constant) 

number of households. Thus, L(t)/H is the number of members in each household at 

time t, so multiplying by this factor translates individual utility into household or fam-

ily utility.
10

 

As Romer points out in his footnote 1, the problem can be easily reformulated with 

individual utility being maximized, but with the discount rate  being interpreted dif-

ferently. The only effect of the total-family formulation on the model’s conclusions 

that the form of the dynamic stability condition   n  (1  )g  > 0 is slightly different 

if the alternative formulation is chosen. 

                                                      
10

 Obviously, fractional humans do not exist, so in real life L(t)/H must be a non-negative inte-

ger. We will ignore this problem here (and throughout the course when it arises).  
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Choosing a functional form for the utility function 

Problems such as this one cannot be solved for utility-maximizing consumption 

paths without choosing a particular functional form for the instantaneous utility func-

tion u(•). Romer’s equation (2.3) gives the functional form he chooses, the constant-

relative-risk-aversion (CRRA) utility function, which is common in growth analysis.
11

 

It is probably far from obvious to you why he chose this particular function, so let’s 

think a little bit about some criteria one might use to choose a form for the utility 

function: admissibility, convenience, and flexibility. 

First of all, the functional form must be admissible, meaning that it must satisfy the 

conventional properties of a utility function. We usually assume that the marginal util-

ity of consumption    /u C t du dC t      is positive for all values of C(t), but that mar-

ginal utility is decreasing, which means that    
22 /u C t d u dC t      is negative. In 

model-building we often choose linear functions when possible, but the latter condi-

tion rules out a linear utility function, because the second derivative of a linear function 

is always zero (i.e., if utility were linear then marginal utility would be constant, not 

decreasing). A quadratic function might be considered—utility could be represented 

by the upward-sloping part of a downward-opening parabola. But a quadratic utility 

function would only work over a limited region, because every downward-opening 

parabola eventually reaches a maximum at some level of consumption and for levels 

beyond that the marginal utility of consumption is negative, violating one of our as-

sumptions. Utility can be approximated locally, but not globally, by a quadratic utility 

function. 

Since linear and quadratic utility functions cannot provide a globally suitable func-

tional form, a natural alternative to consider is a power function similar to the Cobb-

Douglas production function, where utility equals a constant times consumption 

raised to some power. The constant-relative-risk-aversion function that Romer chooses 

is of this type and is easily shown to be admissible. 

A second criterion for choosing a functional form is convenience or simplicity. 

Although the CRRA function does not appear to be very simple at first glance, it turns 

out (as you will see in a few pages) that its first and second derivatives are very simple, 

so the solution is of a particularly simple form when it is used for the utility-

maximization problem. 

                                                      
11

 This function is sometimes called the “constant elasticity of intertemporal substitution” util-

ity function, which may be a more appropriate title for our risk-free intertemporal application. 

When the function is used to analyze risky decisions, the relative rate of risk aversion is the 

constant ; when we use it to analyze intertemporal behavior, the elasticity of intertemporal 

substitution is 1/, which is also constant. So either name is justified. 
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A third criterion for choosing a function is flexibility. The CRRA function is quite 

flexible in that by varying the parameter  it can represent a wide spectrum of con-

sumption behavior: indifference curves can be sharply bending (large ) or straight 

lines ( = 0). As Romer notes,  measures the household’s resistance against substitut-

ing consumption in one period for consumption in another. This is an important be-

havioral parameter in macroeconomic modeling. To see why, we digress for a moment 

on to examine in more detail the concept of consumption smoothing, which was in-

troduced above. 

Consumption smoothing 

Suppose that we ignore issues of discounting for a moment (set the interest rate 

and the rate of time preference equal to zero) and consider the maximization of utility 

for a consumer who lives two periods. If the marginal utility of consumption is positive 

but decreasing, then the utility function is concave and looks similar to the one in Fig-

ure 2. Suppose that the consumer has a fixed amount of income Q to allocate between 

consumption in period one and in period two. We assume that the interest rate is zero, 

so the budget constraint is simply C1 + C2 = Q. One choice (which turns out to be the 

optimal choice) would be to consume the same amount in each period—to “smooth” 

consumption perfectly. This would imply consuming ½Q in each period and getting 

lifetime utility equal to 2u(½Q)—twice the utility of ½Q. (Remember that we are ig-

noring the issue of discounting future utility so that total lifetime utility is just the un-

weighted sum of utility in the first and second periods.)  

To see that consumption smoothing is the optimal plan, consider the alternative 

feasible plan of consuming ½Q + x in one period and ½Q – x in the other, where x is 

positive and less than ½Q. This gives lifetime utility of u(½Q + x) + u(½Q – x). How-

ever, notice from Figure 2 that because of the concavity of the utility function, the 

additional utility gained in the high-consumption period u(½Q + x)  u(½Q) is smaller 

than the utility lost in the low-consumption period u(½Q) – u(½Q – x). Because of this, 

the average utility per period under consumption smoothing, u(½Q), exceeds the av-

erage utility from the uneven consumption path, ½[u(½Q + x) + u(½Q  – x)]. This im-

plies that the utility of the smooth consumption plan is greater than that of the uneven 

plan, so when there is no interest or time preference (r =  = 0), then a utility-maxim-

izing consumer with a concave utility function (diminishing marginal utility of con-

sumption) will choose a smooth consumption path. 

 Now consider how the amount of curvature in the utility function affects this re-

sult. If the utility function is nearly linear (not very sharply curved), then the loss in 

utility from an uneven consumption plan is very small. If the utility function is sharply 

curved, then the loss is very large.  

 The parameter  in the CRRA utility function controls the amount of curvature in 

the function. If  is close to zero, then the function is almost linear and consumers are 
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quite willing to accept uneven consumption patterns. As the value of  gets larger, the 

amount of curvature in the utility function increases and consumers’ willingness to 

accept anything other than smooth consumption declines.
12

 

 

 
As we shall see, introducing discounting of future utility and the earning of interest 

makes the issue of consumption smoothing a little more complicated, but the role of 

the  parameter remains essentially the same. A small  implies a high willingness to 

alter consumption patterns away from smoothness in response to such disturbances as 

changes in interest rates, while a large  means that consumers are determined to pur-

sue a smooth and regular consumption path in spite of these disturbances. 

                                                      
12

 The indifference curves between period-one and period-two consumption mirror this differ-

ence in curvature. With  near zero, the indifference curves approach straight lines, making 

consumption in the two periods near-perfect substitutes. When  is large, the indifferences 

curves approach L-shaped and consumption in one and two are complements. 

 

½ [U(½Q – x) 
    + U(½Q + x)] 
 

U(½Q) 

U(½Q + x) 

U(½Q – x) 

Utility 

Consumption ½Q – x ½Q + x ½Q 

Utility you get if you receive the 
average income with certainty 

Average utility you get 
with uncertain income 

Figure 2. Concave utility 
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Discounting with time-varying interest rates: R(t) and r(t) 

 In writing the simple formula for present value we usually assume that the interest 

rate is constant over time. In discrete time, this allows us to write the present-value 

formula as equation (1): PV = Q / (1 + r)n, where Q is a payment to be received n years 

in the future. What would happen if r varies over time?  

 Consider a discrete-time example with annual compounding of interest. Q is to be 

received two years from now and the interest rate is 4% this year and will be 6% next 

year. One dollar lent at interest today would be worth $1  1.04 = $1.04 after one year. 

Lending $1.04 for the second year would increase its value to $1.04  1.06 = $1.1024 

= $1.00  1.04  1.06. Thus, the present value of $1.1024 two years from today is 

$1.1024 / [(1.04) (1.06)] = $1.00. In the general case of a varying interest rate, the 

denominator of the present-value formula is the product of all the one-year (1 + r(t)) 

terms for all years between now and when the payment is received: 

1

1

[1 ( )],  or

.

[1 ( )]

n

t

n

t

Q PV r t

Q
PV

r t





  







  

The large  notation is similar to the familiar summation notation that uses , except 

that the elements are multiplied together rather than added together. 

 How does this translate into continuous time? As discussed above, the continuous-

compounding discount factor for payments n periods in the future (corresponding to 

1 / (1 + r)n) is ern if the interest rate is constant at r. The exponent of this discount 

factor is the interest rate multiplied by the number of periods, which would also be the 

result of summing the (constant) interest rate over n periods in much the same way 

that raising 1 + r to the power n takes the product of (1 + r) over n periods. 

 What if the interest rate varies between now (time 0) and time n? Then we must 

sum the varying values of the interest rate r (t) between 0 and n. Because we are work-

ing in continuous time, we cannot just add up the interest rates corresponding to a 

finite set of points in time. Instead we must use an integral over the time interval 0 to 

n to sum up all the interest rates. Romer defines the term R(n) to be the integral (sum) 

0
( ) ( ) .

n

R n r t dt   

The appropriate discount factor for n periods in the future is then e R(n). Note that if 

r (t) is constant at r over the time interval 0 to n, then R(n) = r n and the usual formula 

applies. 
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The positivity restriction on   n  (1  )g 

A final issue relevant to the utility function is the condition that   n  (1  )g 

must be positive. I don’t know any intuition that would lead you to this condition prior 

to performing the dynamic analysis, so do not feel like you have missed something if 

the intuitive rationale is not obvious. This condition turns out to be necessary to assure 

the dynamic stability of the equilibrium of the growth model. Look at Romer’s equa-

tion (2.13) and notice that when the utility function is expressed in terms of efficiency 

units of labor, the discount factor turns out to be exactly this expression. If     n 

 (1  )g > 0, then future utility in terms of consumption per efficiency unit of labor 

is discounted positively (i.e., valued less than current utility). 

We can think intuitively about why such a condition is necessary for a stable 

model. The income of each household grows in the steady state due to both population 

growth and technological progress (n and g). When we assume that  > n + (1  )g, 

we are assuming that there is a strong enough preference for current over future utility 

to outweigh the effects of population growth and growth in per-capita income 

(weighted by 1  ). If  were very small, then households would discount the future 

only slightly relative to the present. Since positive, ongoing growth will cause future 

levels of income and consumption to be much, much greater than current levels, small 

(proportional) changes in consumption in the infinitely distant future could have 

greater importance to household utility than large present changes. It is to assure that 

households care enough about changes in current consumption to provide a stable 

equilibrium that we require a sufficient degree of time preference to offset the explosive 

effects of growth.
13

 Households for which this condition did not hold would choose 

extremely high rates of saving that would lead the economy away from a stable, steady-

state equilibrium. 

Deriving the Ramsey consumption-equilibrium equation 

The derivation of consumption equilibrium in this model is challenging. Unless 

you enjoy mathematical applications, you may skim the details of the math on 

Romer’s pages 55 through 57 up to equation (2.21), which is the consumption-equilib-

rium equation he has been seeking. If you want to understand his approach, the para-

graphs below can help. 

 Romer’s intuitive approach to consumption equilibrium relies on the Lagrangian 

method discussed earlier in this chapter. The only formal problem with applying the 

Lagrangian here is that there are infinitely many c (t) values to choose. Formally, dif-

ferentiating the Lagrangian with respect to all of these values would lead to a system 

                                                      
13

There is a mathematical side to this problem as well. If  < 0, then the integral in the last line 

of Romer’s equation (2.14) does not exist because the integrand is getting larger and larger as t 

 . In this sense, the model “explodes” if  < 0. 
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of infinitely many equations in infinitely many unknowns. But the idea is the same 

and in this case we end up with the same answer. 

 The integrals in Romer’s Lagrangian expression (2.17) are summations over all 

values of t. When we differentiate with respect to one particular c (t) we are holding all 

of the other c values constant. Thus, the only element of the summation (integral) that 

changes when c (t) changes is the element corresponding to time t. So the partial deriv-

ative of the integral with respect to any individual c (t) is just the derivative of the inte-

grand with respect to c (t). This partial differentiation leads to Romer’s equation (2.18).  

 A more formal way of finding the utility-maximization condition is the present-

value Hamiltonian, a dynamic version of the Lagrangian. We shall use the Hamilton-

ian to analyze investment models later in the course. A main conceptual difference is 

that the Lagrange multiplier in a dynamic problem can vary over time, so it is replaced 

by a “costate variable” that is a function of time. For a solution to the Ramsey model 

that uses this method, see section 2.1 of Barro and Sala-i-Martin (2004). 

Understanding the Ramsey consumption-equilibrium equation  

As Romer notes in the discussion following equation (2.21), the outcome of this 

mathematical analysis is that growth rate of consumption per worker at time t is the 

Euler equation (equation 2.22 in Romer) 

( ) ( )
.

( )

C t r t

C t





 (9) 

Since  is assumed to be positive (in order to give the utility function the appropriate 

shape), the sign of the growth rate of per-capita consumption on the left-hand side is 

the same as the sign of the numerator of the right-hand side, which is the difference 

between the current interest rate and the rate of time preference.  

The intuition of this result is familiar; we studied it in the two-period model above. 

To reiterate, the interest rate measures the amount of additional future consumption 

the individual can obtain by sacrificing one unit of current consumption—the market 

reward for postponing consumption. Each marginal unit of current consumption that 

is forgone yields e r units of consumption one period later (assuming continuous com-

pounding). On the other side, the rate of time preference  measures the individual’s 

unwillingness, other things being equal, to postpone consumption. An individual with 

equal consumption in the two periods is indifferent to exchanging one unit of current 

consumption for e  units (again, with continuous compounding) a period later. 

If r  >  at time t, then the market reward for postponing consumption (the interest 

rate) exceeds the amount required to motivate an individual to move away from per-

fectly smooth consumption and forgo some current consumption, exchanging it for 
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future consumption through (additional) saving. Thus people want their future con-

sumption to be higher than their current consumption when r  > , and as a result they 

choose a path on which consumption is rising at time t, which is represented mathe-

matically by a positive consumption growth rate: ( ) ( )C t /C t  > 0.  

If r  <  at time t, then the interest reward offered by the market is insufficient for 

individuals to want to keep consumption smooth. In this case, people want more con-

sumption now at the expense of the future and consumption will be declining at t, so 

( ) ( )C t /C t  < 0. The intermediate case in which the interest rate equals the rate of time 

preference is one in which individuals desire a constant level of per-capita consump-

tion over time (exact consumption smoothing) and ( ) ( )C t /C t  = 0. This is the case 

corresponding to Figure 1 in our earlier analysis of the two-period model. 

The argument above explains why the relative magnitude of r and  determines 

whether desired consumption is rising or falling at each moment (the sign of the growth 

rate of consumption). We must still consider what determines how much any given 

deviation of the interest rate from the rate of time preference will cause consumers to 

alter their consumption paths away from smoothness. The sensitivity of consumption 

growth to the difference between the interest rate and the rate of time preference in 

equation (9) is 1/. We can now relate our above discussion of the  parameter to the 

behavior of desired consumption. 

If  is near zero, then the instantaneous utility function u(∙) in Figure 2 is nearly 

linear (as are the indifference curves in Figure 1). In this case, (as we discussed above) 

individuals have only a small preference for smooth consumption and are quite willing 

to change their consumption patterns in response to market conditions. Thus, when  

is small, (and 1/ is correspondingly large) consumption growth will react strongly to 

any given differential between the interest rate and the rate of time preference. Con-

versely, when  is large (and 1/ is small), the utility function in Figure 2 and the 

indifference curves in Figure 1 bend sharply and they want to stick to their smooth 

consumption paths even when there is a strong market incentive to change. The ex-

pression 1/ is called the elasticity of intertemporal substitution.  

Households are making decisions at time t about their future paths of consump-

tion. Based on the future path of the interest rate r (t), Romer’s equation (2.21) tells us 

whether households want their consumption paths to be rising, falling, or flat at each 

moment. In other words, it tells us the slope of the time path of ln C (t) at every t. 

(Recall that d(ln C (t))/dt = ( ) / ( ).C t C t ) It does not, however, tell us the level of the 

consumption path, so we cannot yet determine exactly how much the household will 

consume at the instant t. There are many parallel paths of ln C (having the same slope 

at every time value t) that satisfy equation (2.20). How do we know which one the 

household will choose? 
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The missing ingredient that we have not yet brought into the analysis is the budget 

constraint (Romer’s equation (2.7)), from which he derives the no-Ponzi-game condition 

of equation (2.11).
14

 Among these parallel consumption paths satisfying (2.21), some 

have very high levels of consumption so that in order to follow them the household 

would have to go ever deeper into debt as time passes. Others have such low consump-

tion that the household would accumulate unspent assets consistently over time. Only 

one of these parallel consumption paths exactly exhausts lifetime income so that the 

present value of the household’s wealth goes to zero as time goes to infinity as required 

by the no-Ponzi-game condition. That unique path is the consumption path that the 

household will choose and the point on that path corresponding to instant t determines 

C (t).  

We began this chapter with the goal of generalizing the Solow model’s restrictive 

assumption about saving behavior. However, all of our discussion so far has focused 

on consumption rather than saving. What does this analysis imply about saving? At 

moment t, the household receives income y(t) per efficiency unit of labor, which de-

pends on the amount of capital available in the economy according to the intensive 

production function. We have just analyzed the determination of c(t), the level of con-

sumption per efficiency unit of labor. Saving (per efficiency unit) is just the difference 

between income and consumption at time t: y(t)  c (t). 

The steady-state balanced-growth path in the Ramsey model 

As in the Solow model, we look for a steady-state value of the capital/effective 

labor ratio k. However, in the Ramsey model the dynamic analysis seems much more 

complicated, involving two variables (c and k) rather than just one (k). What is it about 

the Ramsey model that requires the more difficult analysis? 

The equation of motion for k in both models is essentially the same as in the Solow 

model: 

 ( ) ( ) ( ) ( ) ( ),k t f k t c t n g k t     (10) 

which is Romer’s equation (2.26). Notice that this equation involves two state varia-

bles: k and c. If we could find an explicit equation for c (t) that we could substitute into 

the equation, then we could conduct the analysis using k alone. In the Solow model, 

we assume that c (t) = (1  s) f (k(t)), so such a substitution can be made and equation 

(10) reduces to the familiar  ( ) ( ) ( ) ( ),k t sf k t n g k t   . However, in the Ramsey 

model we have no simple equation for c (t); it is determined through the more complex 

process of first determining the growth rate at each point in time by equation (9) then 

                                                      
14

 This condition is often called the transversality condition. 
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reconciling the growth path with the lifetime budget constraint. Because we cannot 

substitute c out to express the model solely in terms of k, we must analyze the dynamic 

behavior of c and k jointly. 

To consider the joint movement of k and c, we need an equation of motion for c. 

This is provided by Romer’s equation (2.25), which is derived from (2.21) by substi-

tuting the marginal product of capital for the interest rate. This equation is reproduced 

below: 

( ) ( ( ))
.

( )

c t f k t g

c t

   



 (11) 

In order to analyze the movements of the two variables together, we use a two-

dimensional phase diagram such as Figures 2.1 through 2.3 in Romer. The little vertical 

and horizontal arrows in the phase diagram show, for any initial point (k0, c0), the di-

rections that the dynamic equations of motion (10) and (11) imply that k and c would 

move if the economy were at that point. For example, an upward arrow indicates that 

the economy’s equations of motion would cause c (the variable on the vertical axis) to 

increase from that point, so over time the economy would tend to move to other points 

lying above (k0, c0). The left and right arrows show the directions that the equations of 

motion would tend to move k (the variable on the horizontal axis) from any point in 

the plane. 

The first step in constructing a phase diagram is to establish for each variable the 

set of points at which it is neither increasing nor decreasing. This means graphing the 

sets of (k, c) values at which c  = 0 and k  = 0. In the Ramsey model, equation (11), 

describing the dynamic behavior of consumption, is particularly simple because when 

it is set to zero, only k(t) (and not c(t)) appears in the equation. Thus, there is a single 

unique value of k — call it k* — for which c = 0. That value is given by f (k*)    g 

= 0 or f (k*) =  + g. Regardless of the value of c, c  = 0 if k = k*, so the locus of 

points at which c  = 0 is a vertical line at k = k*, as shown in Romer’s Figure 2.1. 

When k < k*, then f (k) >  + g. We know this because the marginal product of 

capital increases when the capital/effective labor ratio declines, so k dropping below 

k* makes f (k) larger and thus, from equation (11), makes c  > 0. Similarly, if k > k*, 

then the marginal product of capital will be lower than at k*, so f (k) <  + g and 

c  < 0. The vertical arrows in Romer’s Figure 2.1 show the directions of motion of c at 

points off of the c  = 0 line. Table 2 summarizes the three possible conditions for the 

sign of c  in terms of algebra and in the phase diagram. 
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Table 2. Conditions for change in c 

Value of c  Mathematical condition Position on graph Direction of arrow 

0c    f k g      Right of k=k* line  

0c    f k g      On k=k* line No vertical mvt. 

0c    f k g      Left of k=k* line  

 

The dynamic behavior of k is slightly more complicated than c because  k t  de-

pends on the values of both k(t) and c(t), as shown by equation (10). The hump-shaped 

curve in Romer’s Figure 2.2 shows the values of k and c for which k  = 0. As he des-

cribes in the text, points above this curve are values of c and k at which k is falling 

(hence the leftward arrow) and points below the curve are ones at which k rises. This 

curve is a graph of the levels of c that correspond to the different possible steady states 

for k. Constructing it is exactly analogous to the golden-rule experiment in the Solow 

model, where we considered the effect of different possible steady-state values of k on 

steady-state per-capita consumption. The maximum of the curve in Figure 2.2 corre-

sponds to the golden-rule level of the capital/effective-labor ratio. The movement of k 

is summarized in Table 3. 

 

Table 3. Conditions for change in k 

Value of k  Mathematical condition Position on graph Direction of arrow 

0k      f k c n g k    Above 0k   curve  

0k      f k c n g k    On 0k   curve No  mvt. 

0k      f k c n g k    Below 0k   curve  

 

 

Putting the two curves (or, more precisely, the line and the curve) together gives 

Romer’s Figure 2.3, which describes the dynamics of the system. The point at which 

the two curves intersect shows the steady-state equilibrium values of c and k. If the 

economy is at this point, neither k nor c will change. The arrows in each of the quad-

rants show how (or whether) the system will converge toward the steady state from 

any set of initial values of c and k. 

Saddle-path convergence to the steady state 

The convergence of the Ramsey model is far from obvious judging from the arrows 

in Figure 2.3. If the economy were to start from the upper-left or lower-right quadrant, 

it would move directly away from the steady-state point (such as from point A in 
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Romer’s Figure 2.4). Even if the economy begins in the lower-left or upper-right quad-

rants, convergence to point E is not guaranteed. Notice the four single arrows placed 

on the c  = 0 and k  = 0 curves. All four of these arrows point into the unstable quad-

rants rather than into the potentially stable quadrants. This indicates that if the econ-

omy touches (or even gets close to) these curves on its way to E, it will veer off into 

the unstable region and diverge, as shown in Figure 2.4 by the paths starting from C 

and D. 

The steady-state equilibrium in the Ramsey model is an example of a saddle-point 

equilibrium. There is a unique curve called the saddle path running from the interior of 

the lower-left quadrant and the interior of the upper-right quadrant to point E. If the 

economy begins on the saddle path, it will converge smoothly to the steady state at E. 

If it starts anywhere else, it diverges.
15

 

The knife-edge nature of convergence to a saddle-point equilibrium may make you 

think that convergence is unlikely. It means that the economy must be in exactly the 

right place in order to converge. In our case, it means that given the value of k that we 

inherit from our past saving and investment decisions, the value of c must be exactly 

the right one to put us on the saddle path—a penny of consumption more or less than 

this amount leads to instability. Can we count on this? 

Fortunately, the answer is yes. Because c is a “control” variable rather than a 

“state” variable, its value at time t is free to adjust upward or downward as necessary; 

it is not bound by its past history as is k. Furthermore, the value of c (t) that puts the 

economy on the stable saddle path is precisely the value that puts the household on the 

optimal consumption path that balances its lifetime budget constraint. Thus, our util-

ity-maximizing consumers will automatically choose the level of consumption per per-

son that puts the economy on the saddle path to the steady state, and thus the steady 

state is stable. 

Ramsey equilibrium is Pareto optimal 

 Those who have studied microeconomics in detail are familiar with the property 

that perfect competition in the absence of externalities leads to a Pareto optimal equi-

librium. There is no way to reallocate resources that will make someone better off 

without making someone else worse off. 

                                                      
15

The name “saddle” point for this equilibrium reflects this property. Think about releasing a 

marble or similar object from any point on a saddle (and ignore the effects of the marble’s own 

momentum). From most points, the marble will slide to one side or the other and off the saddle. 

There is, however, one path running across the very center of the saddle on which, if you could 

balance it exactly right, the marble would slide right down into the center of the saddle and 

come to rest there. That stable path is the saddle path and the point of rest in the center of the 

saddle is the saddle-point equilibrium. 
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 In the case of the Ramsey model, we fulfill all of the condition required for Pareto 

optimality, so it is not surprising that Ramsey equilibrium is Pareto optimal. Demon-

strating this intuitively is straightforward because all households and individuals in the 

Ramsey model are identical. Each is maximizing its utility, so without any positive or 

negative externalities from one household to others, they make socially optimal deci-

sions.  

 When we want to prove this formally (which we will not), we evaluate the “social 

planner problem,” contemplating how a benevolent social planner would maximize 

the utility of the typical household subject to the society-level constraints. In the case 

of the Ramsey model, this turns out to be exactly the same mathematical problem that 

the individual household faces, so the household’s solution also maximizes social wel-

fare. 

 Note that the socially optimal capital/effective-labor ratio k* is less than the 

Golden Rule level, which occurs at the peak of the 0k   curve. Why is that? Recall 

that the Golden Rule criterion maximizes the value of y in the steady state. Suppose 

that our economy began at the Golden Rule level of k. Households could, if they 

wanted, increase their consumption slightly. This would increase their utility now, but 

lower it over the steady-state future. Because households are assumed to have a posi-

tive preference for consumption now over the future, they would prefer this alternative. 

Our households with positive  (more precisely,  > n + (1–) g) are not patient enough 

to value only steady-state income. They will always choose a consumption path that 

has too much consumption now to end up at the Golden Rule level of capital in the 

steady-state future. 

 Is this a bad thing? Well, not if you are a household with the preferences that we 

have assumed ( > n + (1–) g). We have just argued that such households are better 

off with k less than the Golden Rule maximum.  

 Should households have positive time preference? (Should  > 0?) That is a philo-

sophical question, not an economic one, but some have argued that society would be 

“better off” if everyone valued the future as much as the present.  

G. Understanding Romer’s Chapter 2, Part B 

Consumer behavior in Diamond’s overlapping-generations model 

The Ramsey model has several important drawbacks. For example, the assump-

tion of infinite lifetimes is clearly counterfactual (given the present state of medical 

science) and may lead to misleading conclusions if it leads agents in the model to be 
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unrealistically forward-looking.
16

 The infinite-lifetime model also makes it impossible 

to model life-cycle or generational effects in which agents save for retirement or leave 

bequests for their children. To analyze questions for which these effects are important, 

economists often prefer to use a modeling paradigm called overlapping generations, in 

which agents live a finite number of periods (usually two) and experience a working 

period and a retirement period. At every moment there is at least one generation work-

ing and at least one generation that is not working. Among the interesting issues that 

can be addressed with such a model are the interaction between retired and working 

generations and households’ behavior in saving for their own retirement. The overlap-

ping-generations model is a natural framework for analyzing such policy issues as So-

cial Security reform. 

The two major differences between the Diamond model and the Ramsey model 

are the infinite-lifetime vs. the overlapping-generations assumption and the use of dis-

crete vs. continuous time. In most other ways, the assumptions of the two models are 

similar or identical, as are their answers to many questions. For example, the utility 

function in the Diamond model is given by Romer’s equation (2.43). The instantane-

ous utility function has an identical CRRA form to the one we used in the Ramsey 

model. The discounting process is similar with two exceptions: (1) time is discrete so 

the discrete-time discounting formula is used, and (2) agents live only two discrete 

periods so a two-period sum replaces the infinite integral. 

The equation of motion for consumption is Romer’s equation (2.49), which is re-

produced below: 

1

2, 1 1

1,

1
.

1

t t

t

C r

C


  
  

  
 (12) 

Note the similarities between equation (12) and the continuous-time version, equation 

(9). In both cases, the growth of the individual’s consumption from one period to the 

next depends on the relationship between r and . If the interest rate exceeds the rate 

of time preference, then individuals will desire a rising pattern of consumption over 

time. If the interest rate is less than the rate of time preference, then consumption will 

fall over time. In the borderline case of r = , the desired consumption path will be 

constant over time. As in the continuous-time model, 1/ measures the sensitivity of 

consumption patterns to differences between the interest rate and the rate of time pref-

erences. Thus, consumption behavior is essentially the same in the two models. 

                                                      
16

 The infinite-lifetime model is sometimes justified by taking a “dynastic” view of the house-

hold. This view incorporates a particular assumption about bequests: that the current genera-

tion values the utility of future generations exactly as if they were extensions of the current 

generation, with future utility discounted at the same rate over all future years.  
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In the infinite-horizon model, it is not possible to achieve a closed solution for cur-

rent consumption from equation (9) and the budget constraint, although these equa-

tions do lead to an implicit solution. We were able to characterize the steady state and 

its properties by using a phase diagram, but we were not able to find an expression for 

Ct in terms of the other variables of the model. Because the consumer in the overlap-

ping-generations model lives only two finite periods, we can perform such a solution 

in the Diamond model. Solving Romer’s equation (2.49) together with the budget con-

straint (2.46) yields (2.55), which gives current consumption by the younger generation 

as a function of income, the interest rate, and the parameters of the utility function. 

Steady-state equilibrium in the Diamond model 

Because we can solve for a closed-form consumption expression, deriving the 

steady state in the overlapping-generations model is more direct than in the Ramsey 

model. With the series of substitutions described on pages 79 to 81, we get (2.60), 

which gives an implicit relationship between kt +1 and kt that does not involve c. We 

have simplified the model to allow us to work with only one variable (k), so we just 

need to characterize the condition that k = 0, or kt = kt + 1, in order to find the steady 

state. As Romer points out, this condition can have multiple solutions that have inter-

esting properties if the utility and production functions fail to satisfy the Inada condi-

tions or otherwise differ from the simple log-utility and Cobb-Douglas cases. 

In particular, the possibility raised by panel (d) of Romer’s Figure 2.12 is one in 

which macroeconomists have been very interested. There are three different possible 

steady-state equilibria in this model. The one to which the economy will converge 

choose is arbitrary; it depends on initial conditions. 

The model of panel (d) raises the possibility of poverty traps in economic growth 

and development. It is possible for an economy to get “stuck” at a low-k, low-y equi-

librium at the same time that other economies with similar parameters are at high-k 

equilibria. Growth economists are always on the lookout for potential explanations of 

large gaps in equilibrium per-capita income (because we observe these in the world) 

and models with multiple equilibria could provide such an explanation. 

Welfare analysis in the Diamond model 

In the Ramsey model, we are able to do some simple welfare analysis: comparing 

everyone’s lifetime well-being under alternative possible states. We are able to do that 

because all Ramsey households are identical—each household exists at every point in 

time, each grows at the same rate, and each has the same utility function. Thus, we 

can determine whether a change in economic conditions leaves the representative 

household better off or worse off and immediately generalize that outcome to all other 

households in the economy. 
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We cannot do welfare analysis quite so neatly in the overlapping-generations 

framework. The agents in the Diamond model are similar to one another in many 

ways. They all have the same utility functions and live two periods. However, they do 

not all live in the same two periods. Thus, a change in the growth path can cause one 

generation’s welfare to be improved but another generation to be worse off, even 

though everyone has the same utility function and maximizes her own utility. Thus, 

sometimes we cannot evaluate welfare unambiguously—some changes will be good 

for some generations and bad for others.  

The only changes that we can evaluate with confidence are those that make every-

one better (or worse) off. This is the Pareto criterion for optimality: an equilibrium is 

Pareto efficient if there is no way to make one individual better off without making 

someone else worse off. Romer shows on pages 87 through 90 that the equilibrium of 

the Diamond model may not be Pareto efficient. He gives an example of a situation in 

which each generation can be made better off than at the current equilibrium. 

 This interesting example is especially timely for debates about the funding of the 

Social Security system in the United States. The source of the dynamic inefficiency 

that can arise in the Diamond model is that each generation has only one way of 

providing for its retirement consumption—saving in the form of capital. Thus, there 

are two motivations for household saving: (1) enjoying a rising living standard through 

the positive return to investment (as in the Ramsey model) and (2) simply providing 

for any consumption at all in retirement (which is not relevant to Ramsey’s infinitely 

lived households). However, only the former motivation applies to society as a whole 

since society never retires.  

 This additional motive for private saving makes it possible that the private propen-

sity to save could exceed the social desirability of saving. In order to have enough 

consumption to thrive in retirement, people may need to save a lot when they are 

young and accumulate a large amount of capital. This large accumulation could push 

the marginal product of capital very low—in a limiting case, to zero. While it is obvi-

ously not socially desirable for agents with positive time preference to accumulate use-

less capital (that has a marginal product of zero), households that have no other option 

for transferring wealth from working to retirement periods might save even with zero 

or negative rates of return on capital. (A durable good that has no productive use but 

wears out over time would have a negative rate of return. Such saving in the form of 

stocks of grain is common among rural households in countries where they have no 

access to financial markets for borrowing or lending.) 

 As Romer points out, dynamic inefficiency of this kind can be mitigated through 

a government policy that redistributes money from the young (workers) to the old (re-

tirees), giving the retirees an additional source of income that does not require saving 

and capital accumulation. This, of course, is exactly what the current Social Security 

system does in the United States. Most economists have favored shifting toward a 
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“fully funded” system in which the current transfers from young to old would be re-

placed by (possibly institutionally mandated) saving/investment by the young toward 

their own retirement income. This would be a shift toward a system in which young 

households would have to accumulate capital rather than receiving retirement trans-

fers from the labor income of the next generation. Compared with today’s system, the 

fully funded scheme increases the possibility that dynamic inefficiency could arise, 

though it seems improbable that this is a real threat for the U.S. economy. 

H. Government Spending in Growth Models 

 Until the late 1970s, macroeconomists usually analyzed the effects of fiscal pol-

icy—aggregate expenditures of government and how those expenditures are fi-

nanced—in a static framework such as the IS/LM model, looking at one period at a 

time and relying on simple rules of thumb such as the assumption of a constant saving 

rate. How will the presence of government spending and taxes affect consumer behav-

ior in our optimal growth models? Romer takes up this question in the latter sections 

of Part A and Part B of Chapter 2 (Sections 2.7 and 2.12). We shall return to related 

issues at the end of the book when we discuss fiscal policy. 

The effects of government purchases 

 What happens when the government buys goods and services? The traditional 

Keynesian approach to fiscal policy says that this rise in aggregate demand leads to an 

increase in the amount of goods and services produced. We shall study this approach 

to macroeconomics in more detail later in the course.
17

  

 In the Solow, Ramsey, and Diamond growth models, however, we model natural 

output, so production is determined by the amount of labor and capital resources avail-

able in the economy and the economy’s technological capability (represented by the 

production function and the technology parameter A), not by aggregate demand. An 

increase in government spending does not directly change the available amounts of 

resources or the economy’s technology, so goods and services that are purchased by 

the government must come at the expense of private expenditures on consumption 
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 This is the standard IS/LM analysis in which a rightward shift in the IS curve causes an 

increase in aggregate demand and, perhaps in the short run, in output. 
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and/or investment.
18

 This tendency for rises in government spending to cause offset-

ting declines in private spending is called crowding out. This phenomenon is reflected 

in Romer’s equation (2.41): for given levels of output and consumption, an increase in 

government spending lowers investment. 

 From this description, it looks as though the effects of government spending in the 

Ramsey model are entirely negative. Consumption yields utility directly and invest-

ment provides future utility through greater productive capacity, so increases in gov-

ernment spending that reduce one or both of these apparently must reduce utility. This 

is, of course, unrealistic. Most of government spending is on public goods such as na-

tional defense, police protection, highways, and education (Is education really a public 

good?) that either yield utility or make the economy more productive. To capture this 

positive effect of government spending we would need to include government-pro-

vided goods and services in consumers’ utility functions and/or to add government 

goods and services (or accumulated government capital) to the production function. 

 Romer chooses not to do this in Chapter 2. The absence of a way of measuring 

how government spending is useful prevents us from being able to use this model to 

assess the welfare impacts of changes in the size of government. We can however ask 

questions about how the size of government affects other variables in the model, in-

cluding private consumption and private capital accumulation in the steady state.
19

 

 Romer’s model of government spending is simple to analyze because changes in 

G do not affect the Euler equations for C  or .c  However, the curve representing no 

change in the capital/effective-labor ratio ( k  = 0) shifts downward, as shown by neg-

ative sign on G(t) in equation (2.41). As Romer shows in equation (2.42), an increase 

in government spending affects consumption by reducing the amount of “disposable” 

income available. This decline in the level of consumption with no change in the slope 

                                                      
18

 In the long run, government expenditures and taxes may affect real output indirectly in sev-

eral ways. Changes in tax policy may affect the incentives to save and invest, leading to changes 

in private capital accumulation. The government may also invest in infrastructure or in research 

and development, which might lead over time to greater productivity. 
19

 We are assuming that changes in the level of government spending affect consumers only 

through their budget constraints. Romer alludes on page 73 to the fact that the outcome would 

be the same if “utility equals the sum of utility from private consumption and utility from gov-

ernment-provided goods.” This means that we could have a utility function where utility de-

pends on u(C) + v (G). As long as utility is additive in this way, the marginal utility of C, which 

is what matters for the consumption/saving decision, is not affected by the level of G, so the 

analysis is still simple. If the level of public goods affects the marginal utility of private con-

sumption, the analysis becomes more difficult (though still tractable), so it is less suitable for a 

textbook explanation. 
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of its time path is reflected in Romer’s Figure 2.8 by the downward shift in the saddle 

path with an unchanged c  = 0 line. 

 Because consumption depends on both current and future disposable income, per-

manent increases in government spending will have different effects than temporary 

ones. The permanent case is quite straightforward. The once-and-for-all downward 

shift in the k  = 0 locus moves the steady-state equilibrium from E to E in Figure 2.8. 

We know from our earlier study of the dynamics of saddle-point equilibria that con-

sumption must jump vertically to the new saddle path, then converge along the saddle 

path to the new steady state. In this case, the point on the saddle path directly below 

E is the new steady state E, so the economy jumps immediately to the new steady state 

with lower consumption and an unchanged capital/labor ratio. In the Ramsey model 

with the marginal utility of private consumption independent of government spending, 

permanent increases in government spending crowd out consumption dollar for dollar. 

 The analysis of temporary, unexpected increases in government spending is more 

difficult and interesting. The exercise that Romer describes is as follows: Before time 

t0, the economy is in a steady state with low government spending at GL. At time t0, 

everyone discovers that government spending is going to be at the higher level GH until 

time t1, when it will return to GL. 

 Those accustomed to thinking of policy effects in static terms might predict that 

the temporary increase would move the economy temporarily from E to E in Figure 

2.8, then back to E when the increase in government spending was reversed. This is 

what would occur under a different assumption about information: if the increase in 

G at t0 was thought to be permanent at the time it happened but then turned out to be 

temporary, so that consumers were surprised again at t1 when G goes back down.  

 However, the lifetime nature of the consumption decision implies that this simple 

move to E and back cannot be correct if people correctly perceive that the change is 

temporary. If the change in government spending is only temporary, it has a smaller 

effect on lifetime disposable income (the right-hand side of equation (2.41)) than if the 

change is permanent. Thus, households would attempt to substitute intertemporally to 

smooth consumption, reducing consumption less at the current time than they would 

have to if the change were permanent. This means that c declines part way, but not all 

the way to E, as shown in the top panel of Romer’s Figure 2.9. The magnitude of the 

reduction in c depends on how long the increase in G is expected to last. The longer 

the increase lasts, the greater is the decline in lifetime disposable income and the 

greater is the decline in consumption. E is the limiting case: an increase in G of infinite 

duration. A very short-lived change in G would cause a very small decline in c, as 

shown (sort of) in the bottom panel of Romer’s Figure 2.9. 

 The point below E to which the economy initially moves is not on a stable saddle 

path for either the high-G steady-state equilibrium or the low-G one. This might seem 
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a little bit unsettling, since it implies a dynamic path that, if it continued forever, would 

send the economy to k = 0. But this is precisely the point: because the change is tem-

porary, the economy will not continue on this unstable path forever, only until govern-

ment spending returns to its lower level. Because consumers know that their disposable 

incomes will rise in the future, they can consume more than the level (E) that they 

could sustain if their disposable income was going to be permanently lower. 

 The dynamics of the economy from the point below E are governed initially by its 

position relative to the temporary, high-G equilibrium E. The direction of motion at 

this point is straight to the left, since the point is on the c  = 0 locus and above the k  

= 0 locus, which means that c  = 0 and k  < 0. As soon as the economy begins moving 

to the left, it leaves the c  = 0 locus and moves into the region where c  > 0, so it begins 

to turn upward and move in a northwesterly direction.  

 As noted above, if the economy were to stay on this path forever, it would eventu-

ally head into oblivion with k falling to zero. However, at time t1 government spending 

falls back to its original level, which shifts the k  = 0 locus and the saddle path back to 

the upper position. At t1, the economy must be exactly on the saddle path leading back to 

E. How can we be sure that this will occur? We know that it must because that is the 

only way that consumers will exactly exhaust their lifetime budget constraint. The 

amount of the vertical decline in c at time t0 must be exactly the amount that puts the 

economy on an unstable (northwesterly) path that intersects the stable (northeasterly) 

saddle path to E at exactly time t1. Thus, the path followed by c and k resembles a 

triangle: an initial vertical drop followed by movement up and to the left then up and 

to the right, as shown in Figure 2.9. 

 As Romer points out, a testable implication of this model can be derived by noting 

that interest rates should track the marginal product of capital, moving in the opposite 

direction of the capital/effective-labor ratio according to the pattern of panel (b) in 

Figure 2.9. Wars seem like a naturally occurring experiment with temporary increases 

in government spending, thus they have been the basis of several empirical tests such 

as Barro (1987). One might raise several objections to using war periods as tests of this 

hypothesis, however. For one, agents do not know exactly how long a war is going to 

last, so a more sophisticated model with uncertainty about t1 might be more appropri-

ate. For another, economies undergo significant structural change during wars, which 

might affect consumers’ incomes in other ways. Some governments have applied price 

controls or other forms of non-market resource allocation during wars that could dis-

tort consumers’ and producers’ decisions. Finally, wars are usually periods of intense 

patriotism, which might cause consumers’ preferences about work and consumption 

to be different than in peaceful periods. To summarize these papers, tests using war-

time data have been quite supportive of the theory for the United Kingdom, but less 

so for the United States. 
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