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A. Topics and Tools 

 Romer’s Chapter 1, covering the Solow growth model and related theories, pre-

sents several challenges that may be new to macroeconomics students. First and fore-

most, it may be the first time that you have used calculus and related mathematical 

methods to analyze economic models. Basic calculus concepts are reviewed in Section 

C of this chapter. If your calculus is shaky or rusty, this section may help, but you may 

also want to pursue remedial tutorial work through the Quantitative Skills Center. 

 The second novelty of this chapter is the concept of a dynamic equilibrium growth 

path rather than a single static level or value as equilibrium. We construct the Solow 

model in continuous time, which enables us to describe rates of change in terms of 

“time derivatives” and to make extensive use of the logarithmic and exponential func-

tions to model the movements of variables over time. These methods will be very fa-

miliar to you if you have taken a course covering differential equations, but otherwise 

might be quite new. Section B introduces you to some of the concepts of continuous-

time modeling that we will use extensively. 

 The central element of growth theory is the effect of current economic conditions 

on investment in new (physical, knowledge, or human) capital, which then affects how 

the economy’s productive capacity evolves, and through this effect influences future 

economic conditions. This seems to suggest the possibility of self-sustaining growth 

through “capital deepening”— increases in the amount of capital per unit of labor in 

the economy. The Solow growth model examines a simple proposition: Can an econ-

omy that saves and invests a constant share of its income sustain ever-growing per-

capita income forever through capital deepening? The answer, first demonstrated by 

Solow (1956) and Swan (1956), is no. With a constant saving rate, such an economy 

will converge to an equilibrium capital-labor ratio, after which any growth that occurs 

must originate in a growing labor force or improving technology, not capital deepen-

ing; capital will continue to grow in steady-state equilibrium, but only to balance the 

growth that is occurring in labor or technology. If these other factors do not grow, then 

neither will the economy. 
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B. Introduction to Growth Theory 

 Chapter 1 of the coursebook introduced the idea of growth and cyclical fluctua-

tions in real GDP. In this chapter, we begin the analysis of the long-run growth path 

of the economy. This analysis ignores short-run fluctuations or deviations from the 

trend growth path in order to focus on the slope (growth rate) and level of the path. 

 Growth theory studies the evolution over time in the natural level of output in the 

economy—the amount of output that would be produced if the macroeconomy were 

in balance. To help clarify the nature of natural output, we shall start with the simplest 

possible economy and work our way toward greater complexity of economic interac-

tion. We shall also consider the distinction between what we call the natural level of 

output and efficient output. Efficient output measures the amount that an economy 

would produce if resources were fully and efficiently employed. Natural output 

measures the amount (less than efficient in any real economy) that is produced when 

we account for microeconomic inefficiencies. In common microeconomic terms, effi-

cient output corresponds to the production-possibilities frontier (PPF), whereas natu-

ral output recognizes that inefficiencies due to monopoly power, tax distortions, search 

costs, and other market imperfections will inevitably cause the economy to produce 

inside the PPF, even at “full employment.” 

Efficient output for a single-person economy 

 Because it is so central to growth theory, it is worth considering the concept of 

natural output in more detail. We will start with the simplest possible economy: one 

person (Jane) living in isolation on an island and surviving by eating coconuts. Jane 

sleeps whenever the sun is down and eats for two hours each day. She has only two 

activities that occupy her remaining waking hours: picking coconuts, which she does 

not enjoy but she must do in order to eat, and playing Frisbee golf, which she likes. 

Coconuts are assumed to be perfectly perishable; any that are not eaten at the end of 

the day are stolen and consumed by monkeys. 

 Jane has a daily production function for coconuts with the single factor input being 

the hours L she spends picking them. Because there are some already fallen coconuts 

and some lying low to the ground, her first hours of picking are very productive. As 

she spends more hours working, her marginal productivity (additional coconuts per 

additional hour of picking) declines. We can depict her production function  Y F L  

by the upward-sloping curve in Figure 1, relating coconuts produced (Y) to hours spent 
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picking (L). The production function represents her opportunity set: in order to maxim-

ize her utility she can choose her number of coconut-picking hours (and the amount 

of coconuts picked) to be any point on (or below) the production function. 

 Given that she enjoys playing Frisbee golf more than picking coconuts, and that 

the number of hours spent playing golf (G) is the total number of daylight hours L0 

minus her time spent picking coconuts (G = L0 – L), her utility is increasing as she 

moves up and to the left in Figure 1, as shown by the large arrow. Her ideal point, if it 

were feasible, would be few (or no) hours picking and lots of coconuts. Her indiffer-

ence curves look like the three curves shown in Figure 1 and her utility maximizing 

point is where the highest attainable indifference curve is tangent to her feasible pro-

duction constraint, at (L*, Y*). Her optimal choice is to work L* hours, play Frisbee 

golf for L0 – L* hours, and produce and eat Y* coconuts. 

 Jane would be worse off if she produced and ate more than Y* or less than Y* coco-

nuts. In macroeconomic terms, Y* is her efficient level of output. More output is not 

better if it takes her above efficient output, because the marginal disutility of work 

would exceed the marginal utility of the resulting coconuts. Note that Jane could pro-

duce more output than the efficient level; Y* is not a physical limitation on the amount 

of output that can be produced. It is the level at which the benefits of increasing pro-

duction no longer justify the costs. 

 

 

Figure 1. Jane's utility-maximizing equilibrium 
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 In terms of familiar microeconomic concepts, the slope of Jane’s production func-

tion is her marginal product of labor. The slope of her indifference curve is her marginal 

rate of substitution between coconuts and leisure (golf) time. Her utility is maximized 

where her marginal product of labor equals her marginal rate of substitution: MPL = 

MRS. 

Efficient output with multiple people and firms 

 When we move from the one-person economy to a multi-person economy with 

exchange of goods and labor, the labor and production decisions seem more compli-

cated, but the same underlying principles apply. Suppose that Jane arbitrarily decided 

to pay herself a wage for the hours worked picking coconuts then sell herself the coco-

nuts at the price that would “clear the market.” Nothing would be different. She would 

balance the marginal utility of the goods that her wage would buy (her “real wage”) 

against the marginal utility of the Frisbee golf that she would have to forgo by working 

more.  

 To see that introducing a labor market and a goods market does not fundamentally 

change her decision-making, consider Jane’s two decisions, as a “worker” and as a 

“producer” of coconuts. As a worker she would work up to the point where the mar-

ginal rate of substitution between coconuts and leisure equals her real wage (measured 

in coconuts per hour): MRS = W/P. As a producer or “firm” she would hire (her own) 

work up to the point where her marginal product of labor equals the real wage: MPL 

= W/P. Thus, she would still produce where MPL = MRS because Jane sets both 

equal to the real wage in her two roles. In terms of Figure 1, think of a line drawn 

through the equilibrium point that is tangent to both the indifference curve and the 

production function. The slope of that line corresponds to the (negative of the) real 

wage. As a worker, she chooses the point at which the line is tangent to her indifference 

curve; as a firm, she chooses the point at which the line is tangent to her production 

function. 

 The principles that Jane used to determine her efficient level of output in a single-

person economy extend directly to economies involving many people and firms. As 

long as markets operate efficiently to equalize the marginal product of labor with work-

ers’ marginal rate of substitution between goods and leisure (with the real wage effec-

tively intermediating the decisions of workers and firms so that MRS = W/P = MPL), 

the economy will produce its optimal, or efficient, level of output. This is true even if 

there are many different goods and many different kinds of labor, as long as each good 

and each kind of labor is traded in a “perfect” or “efficient” market of the kind that we 

assume to exist under perfect competition. 

 Like Jane, a complex macroeconomy is physically capable of producing more than 

the efficient level of output, but this would not be optimal. The benefits of the added 

goods and services would not justify the cost of the forgone leisure required to produce 
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them. Once again, the efficient level of output is not the maximum possible flow of 

production; it is the one that an economy in which all decisions are made efficiently 

would choose. 

Natural output vs. efficient output 

 The phrase above, “as long as each good and each kind of labor is traded in a 

perfect or efficient market,” should raise your eyebrows: It is never true (except in 

economics textbooks and on classroom chalk boards!). Every complex economy is 

made up of imperfect markets in which many kinds of market failures combine to pre-

vent perfect equalization of MPL with MRS. In the presence of microeconomic market 

failures, the macroeconomy will generally settle at a natural level of output lower than 

the efficient level. The sources of market failure are well examined in most microeco-

nomics courses and will only be summarized here.  

 Any sort of monopoly power in the market would cause the monopoly firm to 

produce less output than the efficient amount because it maximizes profit where price 

exceeds marginal cost. Firms in all modern economies enjoy some degree of market 

power, even if most are not strictly monopolies, so we expect that natural output will 

normally fall below the efficient level as a result. Modern new Keynesian models with 

price stickiness (which we study beginning in Romer’s section 6.5) incorporate mo-

nopoly power and thus include this kind of distortion between the natural and efficient 

levels of output. 

 Providing for public goods requires the collection of taxes by the government. It is 

not usually feasible to use lump-sum taxes, so the existence of taxes creates a market 

distortion driving a wedge between MPL and MRS.
1

 Nearly all taxes in modern econ-

omies lead to a reduction in the amount that people choose to work, produce, or con-

sume. Like monopolies, these kinds of taxes reduce the natural level of output below 

the efficient level. 

 Perfect competition also assumes perfect information and complete adjustment of 

prices to clear markets. Both of these assumptions are more plausible in the long run 

(when prices have time to respond to excess demand and supply and people have time 

to learn about the price changes) than in the short run. Relaxing these two assumptions 

                                                      
1

 A lump-sum tax is one in which the amount that someone pays does not depend in any way 

on his or her actions. Such taxes are regressive and highly unpopular, so they are rarely im-

posed. Most common forms of taxation apply taxes to actions: an income tax is a tax on earning 

income, a sales or excise tax is a tax on purchasing goods, etc. These kinds of taxes serve to 

reduce the amount of the action being taxed below the efficient level. If Jane faced an income 

tax on her collection of coconuts (or on her consumption—it’s the same here), it would shift 

her “after-tax” production function downward, causing her (most likely) to substitute more 

Frisbee golf for coconut production and consumption. 
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has had an important role in the evolution of modern macroeconomic theory, as we 

discuss when we cover Romer’s Chapters 6 and 7. 

 In many economies, more subtle economic policies also reduce efficiency. If the 

political system directs resources to industries or firms that are favored by government 

policymakers rather than those that the market would select as most efficient, this mis-

allocation of resources will lower economic efficiency and cause natural output to lie 

below efficient output. 

 Finally, and perhaps most importantly, labor markets rarely if ever approximate 

perfect competition. Workers (and jobs) differ greatly one from another. Differences 

in skills divide “the labor market” into thousands of sub-markets. Jobs and workers 

have specific preferred locations, which further sub-divides the market. And when you 

add in the personal preferences of workers (and employers), hiring of workers is often 

more like “match-making” than it is like a “market.”
2

  

 When we combine labor heterogeneity with imperfect information about the jobs 

available to a searching worker and about the workers available to fill a vacant job, it 

becomes costly to “make matches” in the labor market. Both job-seeking workers and 

employers with vacant jobs must invest time and effort into labor-market search. The 

more effort they put in, the more efficiently they will allocate workers into jobs. But 

search, like almost everything else, is costly and subject to diminishing returns, so pro-

spective workers and hiring firms will not search with “infinite intensity.” The result 

is that there is, at every moment, a pool of unemployed workers and a pool of vacant 

jobs that have not yet been “matched up.” We call this frictional unemployment; it re-

duces employment, and therefore natural output, below the efficient level.  

 Another source of unemployment in every economy is mismatching of skills and 

locations between the pools of unemployed workers and vacant jobs. The frictional 

unemployment discussed above assumes that there exists a suitable match between 

unemployed workers and vacant jobs, but that they simply have not yet found one 

another. What if the vacant jobs all require skills in Web design and the unemployed 

workers are all former assembly-line workers who lack these skills? What if the vacant 

jobs are all in Atlanta and the unemployed workers are in Detroit? These mismatches 

lead to structural unemployment. Specific situations of structural unemployment may 

tend to go away over time (as workers retrain for new jobs or relocate to places where 

jobs are available), but if the structure of labor demand continues to change across 

industries, locations, and occupations, it is likely that there will always be gaps of 

structural mismatch. 

 Frictional and structural unemployment cause the natural rate of unemployment to 

be positive. This leads the actual “equilibrium” or natural level of employment to fall 

                                                      
2

 “Matching” models are important in the theory of unemployment and are discussed in 

Romer’s Chapter 11. 
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below the efficient level that would prevail in perfect markets. Some people whose 

utility-maximizing choice would be to work are left unemployed while searching for a 

job; some firms whose profit-maximizing choice would be to hire another worker are 

left with vacant jobs until a suitable worker can be found. 

 The natural level of output is the amount that the economy produces when all of 

these market imperfections are taken into account. Because monopolies, taxes, distor-

tions, and natural sources of unemployment reduce the amount that the economy pro-

duces, natural output is generally below efficient output. The magnitude of the short-

fall depends on the pervasiveness of these microeconomic sources of inefficiency in 

the economy. Economies that have fewer monopolies, lower tax rates, and more ho-

mogeneous labor markets are likely to achieve more of their economic capacity than 

others, and have a higher natural level of output relative to efficient output. 

Growth theory and behavior of natural output 

 Theories of economic growth examine the long-run evolution of an economy’s 

natural output along its growth path, which is, visually, a graph with natural output 

(or, for reasons to be discussed in the next section, the log of natural output) on the 

vertical axis and time on the horizontal. Growth theories, such as those Romer dis-

cusses in Chapters 1, 2, and 3, typically focus on factors that cause the efficient level 

of output to increase over time. A companion set of theories, some of which are dis-

cussed in Romer’s Chapter 4, look at the determinants of the gap between efficient and 

natural output.  

 For solitary Jane, there is no possibility of market failure, so the efficient and nat-

ural levels of output coincide. Her natural level of output depends on three things: (1) 

her endowment of labor (the number of daily daytime hours available for coconut 

picking or golf), (2) her ability to transform work into coconuts (her production func-

tion), and (3) her preferences about work and leisure (her indifference map). A change 

in any of those factors could cause her efficient output to change. For example, we 

would expect her to pick more coconuts in the summer than in the winter in response 

to a longer work day.  

 In modern macroeconomies, we think of the efficient and natural levels of output 

as being determined by three factors: 

 

 Labor input. For Jane, this was the number of daytime hours coupled with her 

preferences toward work. For macroeconomies, labor input is the size of the 

adult population, multiplied times the share of the adult population that 

chooses to work, multiplied by the average number of hours worked per year. 

The efficient level of output incorporates the effects of demographic changes 
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(such as more retirees or more teenagers) as well as changes in individual pref-

erences about work. Natural labor input and natural output are also affected 

by distortions such as taxes that affect work decisions. 

 

 Capital input. Imagine that Jane devotes some of her time to constructing a 

ladder to reduce the time needed to harvest coconuts. This would shift her 

production function (as a function of labor input) upward. For macroecono-

mies, we think of the capital stock as the available stock of productive struc-

tures and equipment. This stock increases when individuals decide to use some 

of their current resources to produce factories and machines—saving and in-

vestment—rather than consumption goods. 

 

 Technology. Suppose that Jane discovers a better method of climbing trees. 

Like the ladder, this would shift Jane’s production function upward. In mac-

roeconomies, improvements in knowledge about production techniques (such 

as new inventions and innovations) likewise shift the production function up.
3

 

 

 Growth theory models the natural level of output using an aggregate production 

function that depends on these three factors:  , ,Y F K L A , where K is the econ-

omy’s utilization of the services of its aggregate capital stock, L is the aggregate equi-

librium labor input (adjusted for desired hours worked and the natural rate of unem-

ployment), and A is an index of technological progress or “knowledge.” 

 Every growth model has two key components—careful attention to these compo-

nents is essential to understanding how differences in the models’ assumption affect 

their conclusions: 

 A production function that describes how output is related to the inputs. 

 Laws of motion that describe how the inputs to production (L, K, and A) 

change over time, either exogenously or endogenously in response to eco-

nomic variables.  

Given the production function, the growth path of natural output depends on the 

changes over time in K, L, and A. So let’s consider by what mechanisms these variables 

grow. 

                                                      
3

 We have considered capital input and technology to be separate contributors to natural out-

put. However, often new technologies are embodied in new capital goods. Romer presents a 

variant of the Solow growth model with embodied technological change in one of the problems 

(1.14) at the end of Chapter 1. The steady-state balanced growth path of this model is quite 

similar to the standard Solow model with non-embodied technology. 
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 Capital increases over time through the saving and investment choices of house-

holds and firms in the economy. One key element of every growth model is the deci-

sion of how much of current output is consumed immediately and how much is saved 

and invested as capital goods to be used in future production. Because saving and in-

vestment are key economic decisions, the evolution of the capital stock is endogenous 

in most growth models. 

 Labor increases over time as the population grows, which is usually treated as an 

exogenous variable. Secondary factors could be changes in the rate of labor-force par-

ticipation, in average hours worked per worker, and in the natural rate of unemploy-

ment, but growth theory usually either ignores these effects or takes them as exoge-

nous. 

 Technology improves through advances in applied knowledge about production 

methods. The neoclassical growth models that were developed before the 1980s took 

the rate of technological improvement to be exogenous, determined by the progress of 

scientific and engineering knowledge. More recent “endogenous” growth models have 

recognized that technological progress often results from economic decisions to invest 

resources in research and development (R&D). These models treat the “stock of 

knowledge” A as another kind of capital, in which economies can invest by choosing 

to pay for R&D activities rather than buying consumer goods or traditional, physical 

capital goods. 

 Given the production function and the laws of motion, solving a growth model 

consists of determining the equilibrium growth path along which natural real output 

Y moves over time. Although this is not necessarily the case, the growth models that 

we shall study all end up having a “steady-state growth path” along which the econ-

omy eventually settles onto a path with a constant exponential growth rate. Our task 

in understanding the implications of growth theory is to explore how changes in key 

parameters—such as the amount or current resources that economies choose to dedi-

cate to investing in capital and/or research and development—lead to changes in the 

steady-state growth path. 

 In particular, we shall see examples of three kinds of effects that a change in the 

economy can have on its growth path: 

 No effect at all. 

 A “level effect,” shifting the level of the growth path upward but not changing 

the steady-state growth rate (the slope of the path). 

 A “growth effect,” increasing the steady-state growth rate of the economy. 

In the next section, we will examine steady-state growth paths and how they are 

changed by level and growth effects. 
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C. Growth in Continuous Time: Logarithmic and 

Exponential Functions 

Continuous-time vs. discrete-time models 

 When we begin to construct any kind of dynamic model such as a growth model, 

we must decide whether time should pass in discrete intervals or as a continuous flow. 

Discrete-time models assume that there is an interval of time—one “period”—for the 

duration of which the values of all variables remain unchanged. When a period ends, 

all variables may jump to different values for the next period, but they then remain 

unchanged during that period. The step function shown in Figure 2 shows a typical 

graphical representation of a time path of a variable in a discrete-time model looks. 

 In continuous-time models, time flows smoothly and variables can change to new 

values at any moment. For some variables (often called “state variables”), variables 

can only change gradually over time and cannot jump. For others (“control variables”) 

vertical jumps at a moment in time are possible. A typical variable (without jumps) in 

a continuous-time model might have a time path like the smooth line in Figure 2. 

 

  

yt 

Time 

Discrete time 

Continuous time 

Figure 2. Discrete- and continuous-time variables 
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 Although we usually think of time as flowing continuously, there are actually 

many examples of discrete time movement in real economies. The price of gold is fixed 

twice daily, for example, and banks reckon one’s deposit balances once a day at the 

close of business. Moreover, all macroeconomic data are published only at discrete 

intervals such as a day, month, quarter, or year, even when the underlying variables 

move continuously. In these cases, the single monthly value assigned to the variable 

might be an average of its values on various days of the month (as with some time-

aggregated measures of continuously observable variables such as interest rates and 

exchange rates) or its value on a particular day/week in the month (as with estimates 

of the unemployment rate and consumer price index that depend on monthly surveys).  

 The world we are modeling has elements of both continuous and discrete time so 

neither type of model is obviously preferable. We usually choose the modeling strategy 

that is most convenient for the particular analysis we are performing. Empirical mod-

els are nearly always discrete because of the discrete availability of data, while many 

theoretical models are easier to analyze in continuous time because the variables in 

such models are continuous functions of time and can be modeled using the methods 

of differential calculus. We shall examine models of both kinds during this course. The 

first growth models we encounter are in continuous time, so we shall preface that anal-

ysis with some discussion of the mathematical concepts used to model continuous 

growth. 

Growth in discrete and continuous time 

You are probably used to thinking of growth rates, inflation rates, and other rates 

of change over time in terms of discrete, period-to-period changes. Empirically, this is 

a natural way of thinking about growth and inflation because macroeconomic data are 

published for discrete periods. We typically calculate the discrete-time growth rate of 

real output Y from year t to year t + 1 as gY = (Yt + 1 – Yt) / Yt = Y/Y, where Y is 

defined to be the change in Y from one year to the next. As we discussed above, such 

discrete growth calculations correspond to a world where the flow of output is constant 

throughout a period (year), then moves to a possibly different level for the next period. 

In the discrete case, a variable growing at a constant rate g increases its value by 

100g percent each year. If g = 0.04, then each year’s value is 4% higher than the previ-

ous year’s, or Yt + 1 = (1 + g) Yt = 1.04 Yt. Applying this formula year after year (with 

the growth rate assumed to be constant) yields Yt + 2 = (1 + g)Yt + 1 = (1 + g)2 Yt and, in 

general, Yt + n = (1 + g)n Yt . 

However, one ambiguity with discrete growth rates (and discrete-time analysis in 

general) is that the length of the period is, in principle, arbitrary. To see how this affects 

the calculation of growth rates, suppose that we have quarterly data so that there are 

four observations for each year. The value of the variable in the first quarter of the first 

year is Y1, Y2 is the value in the second quarter of the first year, and so on through the 
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years, with Y5 through Y8 being the observations for the four quarters of the second 

year, etc. Can we use the formula gy = (Yt + 1  Yt) / Yt for this case? Yes and no. Alt-

hough this formula gives us a growth rate, that growth rate is now expressed as a rate 

of growth per quarter rather than the conventional growth per year—a value of 0.04 now 

means that the variable increases by 4% each quarter, not 4% per year. For ease of 

comparison, we prefer to express growth rates, inflation rates, and interest rates in 

“annual” rates (percent per year), so the quarterly growth rate calculated by this for-

mula would not give a number comparable to our usual growth-rate metric. 

To convert the quarterly (percent per quarter) growth rate to an annual rate (per-

cent per year), we must think about how much a variable would grow over four quar-

ters if its quarterly rate of growth was, say, gq . In other words, we want to know how 

much bigger Yt + 4 is in percentage terms than Yt  if Y grows by gq per quarter. By the 

reasoning above, Yt + 4 = (1 + gq)
4 Yt , so if g is the annual growth rate,  

1 + g = (1 + gq)
4.  (1) 

Using basic laws of exponents, 1 + gq = (1 + g)1/4, so we can express the value of Y for 

n quarters after date t as Yt + n = (1 + gq)
n Yt  = (1 + g)n/4 Yt . 

One obvious question is whether formula (1) is the same as g = 4gq. The answer is 

no. For example, if gq = 0.01 = 1%, then 1 + g = (1.01)4 = 1.04060401, so g = 

4.060401% > 4%. This is because of the compounding of growth—the effect of the ex-

pansion over time in the base to which the growth rate is applied. The formula g = 4gq 

reflects no compounding: a fraction gq of the initial quarter’s value of Y is added in each 

quarter. But by the second quarter, the value of Y has grown, so an increase in Y of 4% 

of its value in the second quarter will be larger than the corresponding increase in the 

first quarter. Similarly, the third and fourth quarters will have even larger amounts of 

absolute increase in Y. The cumulative effect of this compounding causes the annual 

growth rate of the variable to be more than four times the quarterly growth rate, though 

when the growth rates are small this difference may not be very substantial over short 

periods of time. 

So now we have a formula that allows us to translate between quarterly and annual 

growth rates. However, there is nothing particularly special about quarterly growth. If 

we considered one month to be the time period, then by similar reasoning the annual 

growth rate g would be related to the monthly growth rate gm by 1 + g = (1 + gm)12. 

Using a weekly time period, 1 + g = (1 + gw)52, and if we have a daily period, 1 + g = 

(1 + gd)
365 (except in leap years). Using logic parallel to that used above, the level of the 

daily-growth variable n days after date t would be related to the date t value by yt + n = 

(1 + gd)
n yt  = (1 + g)n/365 yt. 

As you can see, the algebra varies depending on the choice of time units: years, 

quarters, months, weeks, or days. In empirical applications, we are usually restricted 
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to specific discrete time units by the constraints of the available data. National-account 

statistics are published only as quarterly or annual averages; the consumer price index 

is published monthly; exchange rates and prices of financial assets are usually available 

daily or even hourly.  

In a purely theoretical model, we are not constrained by data availability and it is 

often more convenient and intuitive to think of variables as moving continuously 

through time rather than jumping from one level to another as one finite period ends 

and the next begins. Analytically, continuous-time modeling allows us to think of our 

variables as continuous functions of the time variable t, which means that the methods 

of calculus and differential equations can be applied. 

In continuous-time models, t can take on any value, not just integer values. If t = 0 

is defined to be midnight at the beginning of January 1, 2001 and periods are normal-

ized at one year, then t = 0.5 would be exactly one-half year later, t = 1.0 would be 

one year later, etc. To reflect this continuous variation, we typically use the notation 

Y(t) rather than Yt to denote the value of variable Y at moment t. The change in Y per 

unit time at moment t is a “time derivative” dY(t)/dt, which is commonly denoted by 

( )Y t .
4

  

The time derivative measures the amount of change per period (year) in a variable 

as time passes, so it is analogous to the discrete-time “first difference” Y = Yt + 1  Yt. 

The time derivative or first difference tells the amount of growth in Y, but not the rate 

of growth. In order to convert the time derivative or first difference into a growth rate 

(percentage change per year), we divide it by the level of the variable. In discrete time 

this gives us g = (Yt + 1  Yt) / Yt = Y/Y. In continuous time, the corresponding growth 

rate is  = ( ) ( )Y t /Y t  or just Y /Y . The continuous-time growth rate incorporates 

“continuous compounding,” which is the limiting case as the period of compounding 

shrinks from a year to a month to a day and down to zero. 

 So if a variable grows continuously (with continuous compounding) for n years, 

how much bigger will it get? In discrete time (with an annual time unit and annual 

compounding), we used the formula Yt + n = (1 + g)n Yt  to calculate this. In the contin-

uous case, the corresponding formula is  

   ,gnY t n e Y t   (2) 

where e is the constant (approximately 2.71) that is the base of natural logarithms. 

                                                      
4

 The next section discusses time derivatives and presents some useful rules for calculating the 

growth rates of products, quotients, and exponential functions of variables. 
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Exponentials, logs, and continuous growth 

 Equation (2) shows that the value of a variable growing at a constant rate is an 

exponential function of time. In Romer’s analysis of the Solow growth model, we as-

sume that the labor force L and the stock of knowledge A both grow at given constant 

rates. Applying our equation (2) from above gives Romer’s equations (1.13) and (1.14) 

on page 14.  

 In graphical terms, a variable following a constant-growth path looks like the one 

shown in Figure 3, which begins in 1900 with a value of 100 and increases by 5 percent 

per year until 2000. The formula for the value of this variable is 

Y(t) = 100 e
0.05t

, (3) 

where t is defined as a “trend” variable with value zero in 1900, one in 1901, two in 

1902, etc. 

 

 

 Two things are apparent from Figure 3. First, exponential growth, even at a fairly 

modest rate such as 5 percent, leads to huge increases in a variable over a long period 

of time. This is the “miracle of compound growth,” similar to the effect that allows 
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Figure 3. Continuous growth at constant rate 
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modest sums invested early in life to provide large retirement incomes through com-

pound interest.  

 The second notable, if obvious, feature of the time path in Figure 3 is that it is not 

a straight line. This can make life difficult, not only for economics professors who are 

used to drawing (or trying to draw, ) straight lines on the blackboard but also because 

it makes it hard to tell constant-growth paths from paths where the growth rate varies 

over time. 

 Because straight lines are very convenient, it would be nice to find a way to repre-

sent a constant-growth-rate path as a straight line. The natural logarithm function pro-

vides a way to transform the exponential growth path into a line. The natural log, 

which we sometimes write as ln, is the inverse function of the exponential function: by 

definition, ln e
Y
 = Y. Logarithms also have the well-known property that the log of a 

product (quotient) is the sum (difference) of the logs of the two things being multiplied 

(divided).   

 Applying these rules to the formula in equation (3) allows us to write the natural 

logarithm of that variable Y as ln Y = ln (100) + gt = 4.605 + gt, which is a linear 

function of time. Figure 4 shows a plot of the time path of ln Y; you can see that it is a 

straight line. However, the fact that the numbers on the vertical axis are values of ln Y 

rather than Y is a disadvantage when we try to interpret Figure 4. To make the numbers 

easier to interpret, we sometimes use the values of Y rather than ln Y on the vertical 
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Figure 4. Constant growth rate in logarithmic space 
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axis as in Figure 5. (Note that Figure 4 and Figure 5 are identical except for the num-

bers and tick marks on the vertical axis.) 

 
 The disadvantage of using a “log scale” as in Figure 5 is that a given vertical dis-

tance in the graph represents a particular amount of percentage change in Y rather than 

a particular absolute change. In Figure 5, the vertical tick marks for 4000 and 8000 are 

farther apart than those for 8000 and 12000. Depending on the circumstance, we may 

find it easiest to use a “normal” graph like Figure 3, a graph of the log like Figure 4, 

or a log-scale graph like Figure 5. However, the main point here is that if Y grows at a 

constant rate in continuous time, then the plot of ln Y against time will be a straight 

line whose slope equals the growth rate of Y. 

 Graphs like those also make it easy to show the difference between “level effects” 

and “growth effects” on a variable’s steady-state growth path. Note that since ln Y = 

ln Y(0) + gt, the slope of the growth path is equal to g, the continuously-compounded 

growth rate of Y.  

 Suppose that the variable x increases at time t1 and that x has a positive level effect 

on the steady-state path of Y. This means that the steady-state growth rate does not 

change, so the slope of the steady-state path remains the same, but the path is at a 

higher level. The change in the steady-state path then looks like the one shown in Figure 

Figure 5. Using a "log scale" on the vertical axis 
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6 with a vertical “jump” to a higher, parallel steady-state path at moment t1. (To antic-

ipate the results of the Solow and other growth models, while the steady-state path 

may jump upward at t1, it is possible that the actual level of Y in the economy may 

adjust slowly toward the new, higher path.) 

 

Figure 6.  Level effect 

 

 

Figure 7.  Growth effect 

Y(t) 

t t1 

Y(t) 

t t1 
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 Alternatively, suppose that the increase in x causes an increase in the growth rate of 

Y. In this case, since the growth rate is higher the slope of the steady-state growth path 

must be steeper. This is shown in Figure 7, where there is no level effect (vertical dis-

placement) but a positive growth effect (steeper slope). 

 Of course, it is possible for the change in x to have both level and growth effects. 

And these effects need not be in the same direction. For example, it is possible that the 

growth path is displaced downward at t1 (a negative level effect) but becomes steeper 

(a positive growth effect). The key to remember is that level effects shift the vertical 

level of the steady-state path at t1 whereas growth effects change the slope going for-

ward. 

D. Review of Some Basic Calculus Tools 

[Note: Students with a solid understanding of basic differential calculus need not read 

this section.] 

 

Although calculus is a fundamental tool of economics, most undergraduate 

courses sidestep using it by relying on graphs and algebraic analysis of linear models. 

However, the concepts of calculus are so intimately related to the task of economic 

modeling that it is often intuitively clearer, as well as analytically more elegant, to talk 

about economics using the language of calculus. This section and the section on con-

strained optimization in the next chapter develop some basic tools and notation, so 

that you will be more comfortable reading and understanding the texts. They do not 

attempt to teach you any but the most elementary properties of derivatives and inte-

grals. A deeper knowledge of calculus such as that presented in Math 111 (and higher-

level math courses) at Reed is an important part of the economics major’s tool kit. 

Calculus is concerned with relationships between two or more variables. The par-

ticular kind of relationship for which we can employ calculus tools is called a function. 

A function relates one variable (the dependent variable) to one or more others in a 

particular way: if f is a function relating a dependent variable y to a set of independent 

variables x1, x2, ..., xn, then any admissible set of values for the x variables must corre-

spond to a unique value of y. We write the functional notation as y = f (x1, x2, ..., xn). 

The x variables are called the “arguments” of the function. The simplest functions are 

univariate; they have only one variable as an argument, so y = f (x). We begin by de-

veloping some calculus concepts for univariate functions, then we extend the analysis 

to multivariate functions. 
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In economics and other sciences, we frequently want to know how a change in a 

function’s independent variable affects the dependent variable. In particular, we are 

interested in the magnitude y/x, where we use the capital Greek letter delta () to 

mean “a small change in.” The ratio y/x tells the amount of change that is induced 

in y for each unit of change in x. In macroeconomics, we sometimes call such a ratio 

a “multiplier.” If we graph a function with the dependent variable on the vertical axis 

and the independent (argument) variable on the horizontal axis, then y/x is the 

slope of the function. 

Unless the function is linear, a slope measured between two points on the curve 

will depend on which two points are chosen. For example, in Figure 8Error! Refer-

ence source not found. we could measure the slope between points a and b, which 

gives 50  40 = 10 for y and 14  10 = 4 for x, with a slope of 10/4 = 2.5. We could 

also measure slope between points a and c, which gives a slope of 10/10 = 1, or be-

tween points a and d, which gives a slope of 15/20 = 0.75. 
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Figure 8.  Slopes and derivatives 

We calculated all of these slopes by a general formula for the slope between two 

points. Let’s call the value of x at the initial point x0 and the value after the change 

x0 + x. Then the slope of the function between x0 and x0 + x is 

0 0 0 0
0 0

0 0

( ) ( ) ( ) ( )
* ( , ) .

( )

f x x f x f x x f x
f x x x

x x x x

     
   

   
 (4) 
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The function f * is “derived” from the function f —for any function f there is a unique 

function f * that gives the slope of f between any pair of x values. 

The f * function defined in (4) gives the slope of the chord connecting two points 

on the curve:  0 0, ( )x f x  and  0 0, ( )x x f x x    . However, we are often interested 

in the behavior of the function only in a small neighborhood around a point such as a. 

For this, we use another “derived” function—called the derivative function—that gives 

the slope of the line that is tangent to the curve at a particular point. The tangent line 

is the line that touches the curve at exactly one point with the tangent line (usually) 

lying entirely on one side of the curve as in Figure 9. In contrast to the f * function 

above, which depended on both x0 and x0 + x, the derivative function takes only one 

argument: the value of x at the point at which the tangent line touches the curve. 

 

a 

x 

y 

 

Figure 9. Tangent line to a continuous function 

 

We can think about the tangent line at point a as the limit of a sequence of chords 

connecting a with other points on the curve, such as the line segments drawn in Figure 

9. In terms of algebra, the slope of this limiting line is obtained by taking the limit of 

equation (4) as the two points get very close together, i.e., as x gets close to zero. The 

derivative function, often denoted by f (x) or by dy/dx, is given by 

0

( ) ( )
( ) lim .

x

f x x f x
f x

x 

  
 


 (5) 
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 Equation (5) is the formal definition of the derivative of the function f. However, 

it would be awkward to have to take a formal limit every time we want to find the 

slope of a function. There are some simple formulas for the derivatives of common 

functions so that you will not need to take limits. We will examine some of these for-

mulas below. 

An alternative notation that is commonly used for the derivative is dy/dx, which 

is a direct analogy to the y/x notation used for slope. You must be careful with this 

definition, though, because the dy and dx terms are not really numbers, they are infin-

itesimal changes that are sometimes called differentials. Thus, while we sometimes 

multiply both sides of dy/dx = f (x) by dx to get dy = f (x) dx, we must remember that 

this formula holds exactly only for infinitesimal changes in x and y. 

Derivatives of powers, sums, products, and quotients 

Finding the derivative of a function is called differentiation. The following basic 

rules of differentiation apply to all functions that have derivatives. In these rules, f, g, 

and h are all functions of a single variable. 

 

1. The derivative of a constant times a function is the constant times the derivative 

of the function: If g(x) = c f (x), then g(x) = c f (x). 

 

2. If the function is the variable raised to a power, then the derivative is the number 

of the power multiplied by the variable raised to one less power: If f (x) = xn, then 

f (x) = nx n   1. This formula works for all values of n, positive or negative, integer 

or not. For example, the derivative of the function f (x) = x2 is f (x) = 2x; the deriv-

ative of f (x) = x3 is f (x) = 3x2; the derivative of f (x) = x1 = x is f (x) = 1; the deriv-

ative of the constant function f (x) = ax0 = a is f (x) = 0; the derivative of f (x) = x1 

is f (x) = x2; and the derivative of f (x) = x1/2 is f (x) = 0.5 x1/2. 

 

3. The derivative of a sum of two functions is the sum of the derivatives of the 

functions. If h(x) = f (x) + g(x), then h(x) = f (x) + g (x). 

 

4. The derivative of a product of two functions is given by the following formula: 

If h(x) = f (x) g(x), then h(x) = f (x) g(x) + g(x) f (x). 

 

5. The derivative of a quotient of two functions is given by the following formula: 

If h(x) = f (x) / g(x), then h(x) = [g(x) f (x)  f (x) g(x) ] / [g(x)]2. 

 

Using these formulas, we can calculate the derivatives of a wide variety of func-

tions. For example, if h(x) = (4x2  3x + 7) / (x3 + 7x + 4), then we can apply the 
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quotient rule letting the function in the numerator be f (x) and the denominator be g(x). 

Using the rules for powers, sums, and multiplication by a constant, f (x) = 8x – 3 and 

g(x) = 3x2 + 7. Thus,  

 

 h(x) = [(x3 + 7x + 4) (8x – 3)  (4x2  3x + 7) (3x2 + 7)] / (x3 + 7x + 4)2,  

 

a complicated expression, but one that was obtained a lot more easily by the formulas 

than by taking limits of everything. 

Derivatives and maximization 

Since the derivative gives the slope of a function at each point, we can use the 

derivative to tell whether the value of the function is increasing, decreasing, or flat at 

that point. If the derivative is positive at a particular value x0, i.e., f (x0) > 0, then the 

function is upward-sloping or increasing at x0. Similarly, a negative derivative indicates 

a downward-sloping or decreasing function at that particular point. At a point where 

the derivative is zero, the tangent line to the function is horizontal. 

In economics we often want to find the maximum or minimum value of a function. 

For example, we often model households as maximizing utility and firms as maxim-

izing profit or minimizing cost. At a point where a function reaches a maximum or 

minimum relative to the points around it, its slope is zero. To the left of a maximum 

(minimum) point it has positive (negative) slope and to the right it has negative (posi-

tive) slope. Thus, finding the values for which a function’s derivative is zero identifies 

all the values that might be (local) maxima or minima. 

Suppose that a firm’s profit is related to its level of output by the function 

 

   21000 500 2 .P q q q    

 

We can identify the possible maximum or minimum points of this function by taking 

its derivative and setting it equal to zero: P(q) = 500  4q = 0. Solving this equation 

for q gives 4q = 500 or q = 125. Thus, profit may be at a maximum or minimum when 

125 units are produced. 

Since the derivative of a function is zero at both maximum and minimum points, 

how are we to know whether q = 125 is a point where profit is maximized or mini-

mized? There are two ways we could do this. One would be to examine the derivative 

just above and below 125. When q = 124, the derivative is  

 

    500 4 500 4 124 4,P q q       
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so the curve is upward sloping to the left of q = 125. When q = 126, P(126) = 500  4 

(126) = 4, so the curve slopes downward to the right of 125. Thus, we are assured 

that producing 125 units maximizes the firm’s profit. 

A more precise way (because we can never know how “close” to 125 we need to 

be) of distinguishing maxima from minima is to use the second derivative. Just as the 

derivative function tells the rate at which the value of the function changes as x 

changes, we can take the derivative of the derivative to find out how the derivative, or 

slope, function is changing as x changes. If the slope is increasing at a point where it is 

zero, then it is going from negative to positive and the function is at a minimum. If the 

slope is decreasing, then it is going from positive to negative and the function is at a 

maximum. 

The second derivative, denoted f(x), is found by applying the rules of differentia-

tion to the first derivative function f (x). In the case of the profit function, P(q) = 500 

 4q, so P(q) = 4 < 0. The second derivative of the profit function is negative, so the 

function is surely at a maximum. 

The second derivative tells us about the curvature of the function. A negative sec-

ond derivative means that the function opens downward, or is concave. A positive 

second derivative indicates a function that opens upward, which is called a convex 

function.
5

 

Other rules of differentiation 

There are several other rules of differentiation that we will need later in the course. 

Since we will be working with (natural) logarithms frequently, the derivative of the log 

function will often be important. If f (x) = ln x, then f (x) = 1/x = x1. Since we saw 

above that power functions typically differentiate into other power functions, it may 

seem surprising that the log function also differentiates into a power function. How-

ever, recall that differentiating a power function gives a power function with the expo-

nent reduced by one. Thus, the power function that could possibly give 1/x = x1 would 

be x0. However, the derivative of x0 is 0  x1 = 0. Thus, there is no power function that 

gives a derivative involving 1/x; the log function does so instead. 

The inverse of the natural log function is the exponential function f (x) = e x, where 

e is the natural constant equal to approximately 2.71. This function has the unique 

property that it is its own derivative: f (x) = f (x) = e x. It is a function whose slope is 

equal to the value of the function at every point. 

The final rule of differentiation that we study here is a rule for taking the derivative 

of a function of a function. Suppose that h(x) = g [f (x)]. The rule for differentiating 

                                                      
5

Note that some texts use the opposite definitions for convex and concave.  
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such chains of functions is called the chain rule and is h(x) = g  [f (x)]  f (x). For ex-

ample, if h(x) = ln x2, then we can think of the log function as g and the square function 

as f. Applying the chain rule yields h(x) = (1/x2) 2x = 2/x . 

E. Calculus Applications in Macroeconomics 

An application: time derivatives 

In the study of economic growth, our primary interest is on how variables change 

over time. Using our rules of differentiation, we can think of the amount by which a 

variable y changes per period as a time derivative, dy/dt, where t is time. When we work 

with variables in continuous time, the time derivative plays a role analogous to the 

role played in discrete time by the (first) difference of the variable, y  = y(t + 1)  y(t).
6

 

If we plot the path of the variable with time on the horizontal axis as in Figure 10, then 

the first difference of the variable is the slope of the line segment connecting the point 

(t, y(t)) with the point (t + 1, y(t + 1)); the time derivative at time t is the slope of the 

line that is tangent to the time path at the point (t, y(t)). To economize on notation, we 

often represent the time derivative of y as y  dy / dt.  

The relationship between a variable and its time derivative (or its difference) is 

analogous to the relationship between a stock and a flow. For example, if K(t) repre-

sents the size of an economy’s capital stock at time t, then ( )K t is the rate of change of 

K at time t. Suppose first that capital never wears out. Then the capital stock increases 

at the rate that new investment is put in place. If we denote the flow of investment in 

new capital by I (t), then ( ) ( )K t  = I t .  Taking account of capital wearing out is only a 

little more complicated. Depreciation is the flow of reductions in the value of the cap-

ital stock due to wearing out and obsolescence. If the flow of depreciation of capital is 

D(t), then the change in the capital stock is the flow of net investment, 

( ) ( ) ( )K t  = I t D t .  

 

                                                      
6

It may seem like y is analogous to only the numerator of dy /dt. To see why the denominator 

disappears, note that the difference can be thought of as the ratio of the change from one year 

to the next in y (i.e., y) to the change in t (which is t  (t  1) = 1). Because the change in t is 

exactly one, the denominator vanishes. 
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Figure 10. Time derivatives 

While time derivatives are very useful for many applications, it is often more help-

ful to measure the change in a variable over time as a percentage change or growth rate 

rather than as an absolute change. We convert differences into growth rates by dividing 

the change in the variable by the level of the variable. For time derivatives, this means 

that the (annualized) growth rate of a variable y at time t is ( ) ( )y t / y t .  This ratio is a 

“pure number” such as 0.03 (or 3%) that can be compared directly with the growth 

rates of other variables. 

Recalling the laws of derivatives, consider the time derivative of ln(y(t)). Using the 

chain rule and the rule about derivatives of logarithms, d ln(y(t))/dt = (1/y(t))  dy/dt 

= ( ) ( )y t / y t .  Thus, the slope of the time path of the logarithm of a variable is equal to 

the variable’s growth rate. If a variable has a constant growth rate over time, the path 

of its log will be a straight line, which we discussed in section B of this chapter. As we 

noted above, it is often more convenient to plot the path of a variable’s log rather than 

plotting the level of a variable, since periods of faster and slower growth will show up 

readily to our eyes as regions with steeper and flatter slopes. 

Growth rates of products, quotients, and powers 

It often happens in growth theory that we know the growth rates of two variables, 

x and y, and we want to know the growth rate of another variable z that is a function 

of x and y. It turns out that there are very easy rules for the relationship between the 

growth rates if z is a product, quotient, or power function of x and y. Applying these 

simple rules will make your life much easier throughout the course, saving you a con-

siderable amount of differentiation and algebra. 
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Rule 1.  If z = xy, then / / / .z z x x y y   In words, the growth rate of a product 

is the sum of the growth rates of the variables being multiplied.  

 

A common application is the relationship between nominal and real GDP. Nominal 

GDP is the product of real GDP and the GDP price index, so the growth rate of nom-

inal GDP is the sum of the growth rate of real GDP and the GDP inflation rate. 

To prove Rule 1, take the derivative of z with respect to time, using the product 

rule for derivatives described earlier. That gives us z  dz / dt = x y + y x.  Dividing the 

left side of this equation by z and the right side by the equivalent expression xy yields 

z / z = xy / xy + yx / xy = x / x + y / y.  

 

Rule 2. If z = x/y, then / / /z z x x y y   . Again, in words, the growth rate of a 

quotient is growth rate of the numerator minus the growth rate of the denominator. 

 

The same application can be used here. The GDP price index is nominal GDP divided 

by real GDP. Thus, the inflation rate is the difference between the growth rate of nom-

inal GDP and the growth rate of real GDP. Rule 2 follows directly from Rule 1. 

 

Rule 3.  If z = xn, where n is a constant (not necessarily a integer), then 

 / /z z n x x  .  If one variable is equal to another variable raised to a power, then 

the growth rate of the first is the growth rate of the second times the power. 

 

This rule has applications involving elasticities. The function z = xn is a constant-elas-

ticity function with the elasticity of z with respect to x being equal to n. Thus, if x is 

growing at rate gx and the elasticity of z with respect to x is n, then z will grow at rate 

ngx. 

Rule 3 can be proved using the chain rule and the rule for taking the derivative of 

a power. Differentiating with respect to time yields 
1nz nx x . Dividing the left side 

by z and the right side by the equivalent expression xn yields the result that 

1 /n nz / z = n xx x = n x / x
. 

Multivariate functions and partial derivatives 

All of the applications we have discussed above have related to situations in which 

the dependent variable under consideration (y) could be related to a single other vari-

able (an independent variable x or time t). In most economic models, each variable is 

affected by many other variables, not just one. To analyze such models, we must ex-

tend the idea of a derivative to accommodate multiple variables. 
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The concept of a derivative is essentially bivariate: it involves a “dependent” vari-

able whose change is in the numerator and an “independent” variable whose change 

is in the denominator. To use bivariate derivatives in a multivariate context, we exam-

ine the relationship between the dependent variable and each of several independent 

variables one at a time. In doing this, we explicitly assume that all of the independent 

variables other than the one we are currently examining do not change. 

For example, suppose that production Y is assumed to depend on the levels of two 

inputs, labor L and capital K, according to a production function Y = F(K, L). We can 

use the tools of calculus to examine the effect of an increase in capital on production 

holding labor constant (the marginal product of capital) or the effect of an increase in 

labor on production holding capital constant (the marginal product of labor).  

The partial derivative of the production function with respect to capital (labor) is 

defined to be the derivative of the production function taking capital (labor) as the 

independent variable and holding labor (capital) constant. We denote this partial de-

rivative using the curly  rather than d, e.g., Y/K or Y/L, to signal that other vari-

ables are being held constant. 

Since most economic relationships are multivariate, the partial derivative is used 

extensively in economic analysis. All the usual rules of differentiation that we studied 

above apply to partial derivatives as well. You must be careful, however, to remember 

which variables are allowed to change and which are being held constant. 

Total differentials 

When we are considering multivariate relationships among variables, the concept 

of the total differential is often useful. In the production function example, the level of 

output is related to the levels of the inputs by the production function Y = F(K, L). The 

partial derivatives Y/K and Y/L measure how Y changes if either K or L changes, 

but what happens if both K and L change? 

The total differential of Y, which we write as dY, relates the change in Y to changes 

in both K and L. The formula for the total differential is 

 ,
Y Y

dY dK dL
K L

 
 
 

 

 

where dK and dL represent changes in K and L. The total differential applies exactly 

only for infinitesimally small changes in K and L. We sometimes use the total differ-

ential to evaluate the relationships among the changes in variables in non-linear mul-

tiple-equation models where explicit solutions are impossible. 
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Multivariate maximization and minimization 

 Now that we have generalized the concept of the derivative to allow multiple in-

dependent variables, we can consider how to find the maximum and minimum of mul-

tivariate functions. A function such as y = f (x) may reach a maximum or minimum 

only at a value of x where tiny changes in x have no effect on y. This occurs where the 

first derivative is zero: f (x) = 0.  

 Similarly, a multivariate function y = F(x1, x2) can have a maximum or minimum 

only where both partial derivatives are zero: y/x1 = 0 and y/x2 = 0. Geometrically, 

this means that the three-dimensional surface described by the function is flat looking 

both in the x direction and in the y direction.
7

 

F. Understanding Romer’s Chapter 1 

Romer’s Chapter 1 introduces you to the neoclassical growth model developed by 

Robert Solow and elaborated by him and many others in the 1950s and 1960s. The 

math in Chapter 1 is not very high-powered, but it contains some subtle applications 

that you may find tricky if you have not seen them before. This section will help you 

understand those points. 

Manipulating the production function 

On pages 10 through 12, Romer starts with the assumption that aggregate output 

depends on inputs of labor and capital and on an index of technology. He then moves 

rather quickly through some mathematical assumptions and manipulations that lead 

him to express the level of output per effective unit of labor input as a function of the 

capital/effective-labor ratio. 

The initial assumption is that the production function has constant returns to scale. 

In mathematical terms, this condition is written as Romer’s equation (1.2). Since c in 

equation (1.2) can be any positive number, we can choose a particular one. It turns out 

to be convenient to choose c = 1/AL, the reciprocal of the amount of “effective labor” 

                                                      
7

 The first partial derivatives equaling zero is the “first-order condition” for a maximum or 

minimum. To be sure that a point at which the partial derivatives are zero is an extremum and 

to determine whether it is a maximum or a minimum requires second-order conditions. We 

will not be concerned with second-order conditions in this course—they are satisfied in all the 

models with which we shall work. 
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in the economy.
8

 The reason that this is a convenient choice is that it implies that 

F(K/AL, AL/AL) = F(K/AL, 1) = F(K, AL)/AL = Y/AL. In words, this equation says 

that output per unit of effective labor depends only on the amount of capital per effec-

tive unit of labor. (If we ignore the presence of A for the moment, this says that output 

per worker depends only on how much capital each worker has to work with.) We 

simplify the notation by writing  y f k  rather than Y/AL = F(K/AL, 1) with the k 

 K/AL, y  Y/AL, and    ,1f k F k . 

The partial derivatives of the production function have important economic inter-

pretations. The marginal product of capital is defined to be the amount of additional 

output that can be obtained if the amount of capital input rises by one unit holding the 

amounts of the other inputs (labor, in this case) constant. Mathematically, this corre-

sponds to the partial derivative: the amount by which the dependent variable changes 

when one of the independent variables changes by one unit with the others unchanged. 

Thus,  

 

MPK = Y/K = F(K, AL)/K  FK(K, AL). 

 

Similarly, the marginal product of labor is  

 

MPL = Y/L = F(K, AL)/L  FL(K, AL). 

 

On page 12, Romer shows that the marginal product of capital is equal to the first 

derivative of the intensive form of the production function, that is, MPK = f (k).
9

 Thus, 

the assumption that f (k) > 0 is the natural economic assumption that capital’s mar-

ginal product is positive—that more capital allows more output to be produced. The 

assumption that f(k) < 0 asserts that as an economy gets more capital relative to (ef-

fective) labor, the marginal product of capital declines. This is nothing more or less 

than the standard microeconomic assumption of diminishing marginal returns, 

dressed up in fancy calculus clothes. 

The “polar” Inada conditions discussed on page 12 also have easy intuitive inter-

pretations. The condition that limk0 f (k) =  says that as the capital/effective-labor 

                                                      
8

You can think of L as measuring the number of workers in the economy and A as measuring 

how effectively each worker works. (If the intuition is easier, you can think of increases in A as 

making each worker “bigger.”) The product AL is the amount of effective labor input. As we 

shall see below, AL grows for two reasons: the labor force usually expands over time with the 

population and each worker becomes more effective (or productive) as technology improves. 
9

This may seem obvious, but remember that MPK is Y/K, while f  (k) is y/k = 

(Y/AL)/(K/AL). 
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ratio gets close to zero, the marginal product of capital gets extremely large. In other 

words, if workers have practically no tools at all, then an extremely large increase in 

production occurs if they acquire a small amount of capital. Similarly, the condition 

that limk  f (k) = 0 refers to the other extreme, when workers have huge amounts of 

capital. If the marginal product of capital goes to zero in this situation, it means that 

once a very large amount of capital is in place for each worker, additional units of 

capital eventually have only vanishingly small effects on production. 

Both of the Inada conditions are natural extensions to extreme cases of the idea of 

diminishing marginal returns. The effect that they have on the production function 

shown in Romer’s Figure 1.1 is to assure that the slope of the curve at the origin is 

vertical and that if you follow the curve far enough to the right, it will become arbitrar-

ily close to horizontal. These conditions (together with the assumption that the MPK 

is everywhere diminishing) assure that for any positive value r, there is some level of k 

at which the MPK is equal to r. The Inada conditions are important in assuring the 

existence and uniqueness of a steady-state equilibrium. 

The Cobb-Douglas production function 

Economists usually prefer to work at the greatest possible level of generality in 

order to assure that specific assumptions do not lead to conclusions that would not be 

valid in more general cases. For this reason, most of the analysis of the Solow model 

does not specify a particular functional form for the production function. However, 

sometimes we specify a particular form either because analysis in the general case is 

too difficult or in order to provide a specific example for expositional purposes. 

In the short section on pages 12 and 13, Romer examines the properties of the 

Cobb-Douglas production function. This functional form is a workhorse of economics be-

cause it is one of the simplest functional forms having the basic properties that we 

require: constant returns to scale and positive but diminishing marginal products for 

the factors of production. 

The constant-returns-to-scale Cobb-Douglas function with labor-augmenting or 

“Harrod-neutral” technological progress is written as in Romer’s equation (1.5): 

1( , ) ( ) ,Y F K AL K AL    (6) 

where  is a parameter between zero and one. Romer’s equation (1.6) shows that this 

function has constant returns to scale. In equation (1.7) he shows that the intensive 

form of the Cobb-Douglas is   .f k k  

 Let’s consider some other properties of the Cobb-Douglas that will be useful on 

the many occasions that we use it in this course. First of all, the marginal product of 

capital is  
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1

1 1 1( ) .
F K

MPK K AL k
K AL



    
       
  

 (7) 

To get the marginal product of labor, we differentiate with respect to L (not AL) to get 

(1 ) ( ) (1 ) (1 ) .
F K

MPL A K AL A A k
L AL



    
       
  

 (8) 

 An interesting property of the Cobb-Douglas function emerges when we assume 

that each unit of labor and capital employed is paid an amount equal to its marginal 

product, as occurs under perfect competition and profit maximization. If this is the 

case, then the total amount paid to owners of capital is MPK  K and the share of total 

GDP paid to capital is K = (MPK  K) / Y. Using the first part of equation (7), 

1 1

1

( )
.

( )
K

K AL K

K AL

 

 


     

Similarly, labor’s share L is 

1

(1 ) ( )
1 .

( )
L

A K AL L

K AL

 

 


     

Thus, the exponents of capital and labor in the Cobb-Douglas function are the shares 

of GDP that they receive in competitive equilibrium. Since  and 1   sum to one, 

the competitive payments to capital and labor exactly exhaust total GDP. This is useful 

because the shares of output earned by labor and capital are relatively easy to estimate 

and have tended to be relatively stable over the long run, making it possible to get a 

ball-park estimate of  without doing any fancy econometrics.
10

 

 Another interesting property of the Cobb-Douglas coefficients  and 1   is that 

they are the elasticities of output with respect to the two factors. The elasticity of output 

with respect to capital is defined as  

.K

Y K K
MPK

K Y Y


    


 

Using our marginal product formula from (7) gives 

                                                      
10

 There is strong evidence that capital’s share K has increased in recent years relative to its 

earlier historical values. See Piketty (2014). 
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1 1

1
( ) .

( )
K

K
K AL

K AL

 

 
      

Similar analysis shows that L = 1  . 

 Finally, it is sometimes convenient to represent the Cobb-Douglas function in log 

form rather than in levels. Taking the natural logs of both sides of (6) gives 

ln Y =  ln K + (1  ) ln A + (1  ) ln L. 

Thus, the Cobb-Douglas is equivalent to a log-linear production function—the log of 

output is a linear function of the logs of the inputs. 

The nature of growth equilibrium 

The aim in these opening chapters is to characterize economic growth. Since sus-

tained growth implies an ongoing process of change, we need to think about the kind 

of equilibrium that would be appropriate for a growth model. The equilibrium we seek 

will be a stable “growth path” for the main variables of the model rather than a fixed 

level. By stable, we mean that an economy will tend to converge to this equilibrium 

path over time and, once on the path, will proceed along it.  

There are many different kinds of growth paths that could be stable equilibrium 

paths. We could have equilibrium paths with constant growth rates or ones on which 

growth rates increase, decrease, or oscillate over time. We could have equilibrium 

paths on which some or all of the major variables grow at the same rate or paths on 

which growth rates of variables differ. 

Most of the simple growth models that we study in this course have equilibrium 

balanced-growth paths on which at least some of the major variables grow at the same, 

constant rate. This suggests two possible strategies for analyzing the equilibrium 

growth path.  

For some models, we can find a balanced-growth path by looking for conditions 

under which the ratio of two variables is constant. For example, if K/AL is constant 

(i.e., has a zero growth rate), then K and AL must be growing at the same rate because 

the growth rate of a quotient is the difference between the growth rates of the numer-

ator and denominator. Therefore a situation in which / 0k k  , where k  K/AL, is a 

candidate as a possible balanced-growth path. 

Another possible approach to finding an equilibrium growth path is to examine 

situations in which the growth rate of one of our “level variables” is constant. So we 

might look for a situation in which 0,Kg  where / .Kg K K  Each of these strategies 

will be useful to us in our growth analysis. In the basic Solow model of Romer’s Chap-

ter 1 and the Ramsey model of Chapter 2, the equilibrium growth path is most easily 

characterized by the / 0k k   condition, which is equivalent to the simpler condition 
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0k  . The endogenous growth models of Romer’s Chapter 3 will often be easier to 

characterize using the second strategy. 

Basic dynamic analysis of k 

On pages 13 and 14, Romer presents three basic “equations of motion” for the two 

factors of production and the index of productivity. Equations (1.8) and (1.9) define 

the exogenous and constant growth rates for labor and productivity, n and g. These 

equations are equivalently expressed as (1.11) and (1.12) or as (1.13) and (1.14). Equa-

tion (1.15) defines the change in the capital stock to be the difference between the flows 

of new gross investment and depreciation. Gross investment is assumed to equal sav-

ing, which is proportional to income in this model: sY(t) where s is the constant saving 

rate. Depreciation is assumed to be proportional to the existing stock: K(t) where  

(the lower-case Greek letter delta) is the constant rate of depreciation. 

Following the first strategy suggested above, we try to represent the model in terms 

of a variable that might be expected to approach a constant value on the equilibrium 

balanced-growth path: k. Thus, we are looking for an expression for the growth or 

change over time in k. One way of obtaining the solution is direct differentiation with 

respect to time. Romer shows how this is done on page 16. 

An alternative derivation makes use of the growth-rate rules discussed above. 

Since k = K/AL, we can use growth-rate rules 1 and 2 from above to calculate its 

growth rate as k / k = K / K  A/ A  L/ L  . The growth rates of technology and labor 

are assumed to be the constants g and n respectively, while the change in the capital 

stock is given by Romer’s equation (1.15). Thus,  k / k = sY   K / K  g  n   . Multi-

plying both sides of this equation by k yields  k = sY / K k  k  gk  nk   . But Y/K = 

y/k = f(k)/k, so 

   k = sf k   n + g +  k  ,  

which is equivalent to Romer’s equation (1.19). 

If we knew the specific form of the production function f, for example, if we as-

sumed it to be Cobb-Douglas, we might be able to use methods of differential equa-

tions to solve this expression for a time path for k given some starting value k(0). This 

would tell us the value of k at any time as a function of the initial value and time t. We 

shall need to do something like this in order to analyze how the model converges to 

the equilibrium balanced-growth path.  

However, we can characterize the essential properties of the equilibrium path with-

out choosing a specific production function and without resorting to sophisticated 

mathematics. Romer’s Figures 1.2 and 1.3 are alternative versions of a phase diagram 

that depicts the relationship between the level of k and its change. We define a steady-
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state equilibrium (or a balanced-growth path) to be a situation where the value of k (the 

ratio of capital to quality-adjusted labor) is stable over time. Mathematically, we seek 

a solution in which 0.k   From Figure 1.3, you can see that there is a unique level of 

k at which this steady-state equilibrium occurs. For lower values of k, there are eco-

nomic forces that will cause it to increase; for higher values, these forces will decrease 

k. If the economy’s capital/effective-labor ratio is the value k* shown in Figure 1.3, 

then it is on a stable, steady-state balanced-growth path. 

Using Taylor series to approximate the speed of convergence 

Beginning on page 26, Romer examines the speed at which a Solow-model econ-

omy would converge to the steady-state path. We can only solve for the exact path of 

convergence if we know the functional form of the production function. For example, 

if the production function is Cobb-Douglas, then one could use differential-equation 

methods to calculate a path of convergence for k and y given any starting values. 

However, we would rather not tie ourselves down to one, specific functional form 

unless it is truly necessary. An alternative procedure is to approximate the behavior of 

the unspecified production function using the method of Taylor series. A first-order Tay-

lor-series approximation of a function around a specific value approximates the behav-

ior of the unspecified general function as a linear function. Since Taylor-series methods 

are often covered toward the end of a calculus sequence and some students may not 

have studied them, we shall digress briefly to introduce the basic mathematical ideas. 

Suppose that two variables are related by a function z = g(x), such as the one shown 

in Figure 11. We assume that the first, second, and higher derivatives of g are contin-

uous functions at some chosen point x*. Further suppose that z is equal to the known 

value z* when x is x*. If g were a linear function, having a constant slope, then we 

could calculate the value of z corresponding to any value of x as  

z = z* + g ( x*) (x  x*).  (9) 

This equation expresses the value of z as z* (its value when x is x*) plus the slope of the 

function (at x*) times the difference between x and x*. If g were a linear function, then 

the slope would be constant and equation (9) would give the exact value of z for any 

value of x. If g is not linear, then the slope changes and the actual function curves away 

from the straight-line approximation given by (9) as x moves away from x*. Figure 11 

shows how the linear approximation z2 to the true value z1 = g(x1) is calculated as z* 

plus the vertical distance g ( x*) (x1  x*), which is the height of the “slope triangle” to 

the right of (x*, z*). 

 The linear approximation given by equation (9) and shown in Figure 11 is only a 

“first-order” approximation. A famous theorem of calculus called Taylor’s Theorem 

asserts that we can approximate any well-behaved function arbitrarily closely in the 
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neighborhood around (x*, z*) by including higher and higher-order terms. For exam-

ple, the second-order Taylor approximation of g(x) in a neighborhood around x* would 

be 

21
2

* ( *)( *) ( *)( *) .z z g x x x g x x x       (10) 

Equation (10) approximates the g function as a parabola with both slope and curvature 

equal to those of g at the point (x*, z*). The mathematical series that grows as the order 

of the approximation is increased is called a Taylor series. Equation (9) is called a first-

order Taylor series and equation (10) is a second-order Taylor series. 

 For growth analysis, a first-order Taylor approximation is usually assumed to be 

sufficient. Romer’s equation (1.29) on page 26 applies our equation (9) to the phase 

diagram function of Romer’s Figure 1.3. The z variable is k , the change in k, and the 

x variable is k. We choose k*, the steady state value of k, as the specific value around 

which we approximate. We know that when k = k*, its change is zero because we are 

in the steady state, so ( *) 0.k k   Thus the point corresponding to (x*, z*) in Figure 11 

is (k*, 0). The “z*” term on the right-hand side of (9) does not appear in Romer’s equa-

tion (1.29) because it is zero. 

To evaluate the derivative in (1.29), we differentiate the equation of motion (1.19) 

with respect to k and evaluate the resulting expression at the steady-state value k*. The 

result of this differentiation is equation (1.32). Romer then denotes the negative of that 

derivative by  it is just a constant number since it is evaluated at the steady-state 

Figure 11. Taylor approximation 
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point. Equation (1.30) shows that the gap between the current level of k and the steady-

state level will decrease by a fraction approximately equal to  each year. Using the 

formula for continuous growth (in this case, at a negative rate), we have 

 ( ) * (0) * ,tk t k e k k    where k(0) is the value of the capital-to-effective-labor ratio 

at which we begin the convergence process. 

By appealing to some benchmark empirical estimates of the parameters of the 

model, Romer estimates  to be approximately 0.04. This means that 4% of the gap 

between actual and steady-state per-capita output (and capital per worker) will be elim-

inated in one year. Since this gap gets smaller over time, the absolute amount of change 

in k will diminish year-by-year during the convergence process (the flip-side of com-

pound growth since the gap is diminishing rather than growing). This means that it 

would take about 17 years for one-half of the initial gap to be eliminated. He gets this 

number by noting that e0.04 (17) = 0.507  1/2, so k(17)  k*  1/2 [k(0)  k*]. 

What can (and can’t) the Solow model explain? 

 Romer’s important section 1.6 evaluates the performance of the Solow model 

somewhat informally. The convergence prediction of the Solow model was quite suc-

cessful in predicting the behavior of the economies of Western Europe after World 

War II, which provided some early support. But it would be surprising if a 1956 model 

were to provide a perfectly accurate prediction of what has happened in the ensuing 

60+ years. This section documents some of the ways in which the real world seems to 

deviate from its predictions; these shortcomings have motivated much of the research 

in growth models since the mid-1980s. 

 Why do per-capita income levels differ among countries? We shall study this in 

some detail in Romer’s Chapter 4, but what does the Solow model say? First, it is 

possible that countries are at different stages of convergence to their steady-state 

growth paths, so that some countries are still catching up with the leaders through the 

process discussed in section 1.5. But this does not seem sufficient to explain the large 

and persistent income differentials we observe. How much could the steady-state levels 

of per-capita incomes vary? 

 According to Solow’s framework,    
*

/ * * ,t tt
Y L A y A f k   where  

*
/

t
Y L  is 

the level of income per worker on the steady-state growth path at time t. So any differ-

ence between two countries’ steady-state per-capita incomes must be due to either (1) 

differences in At or (2) differences in k*. 

 Differences in k* are difficult to measure because we cannot directly measure A in 

its denominator. However, we can measure Y/L and K/L, which allows us to conclude 

that differences in capital intensity among economies are not nearly large enough to 

explain the differences in income across countries. 
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 That leaves differences in A as the remaining explanation. So what is A and why 

would it differ across countries? We have interpreted A as the “stock of technological 

knowledge,” but as Romer points out A is really a proxy for everything except capital 

that leads to growth in per-capita output. If A were just knowledge and it differs greatly 

across countries, we would have to explain what prevents knowledge (which is noto-

riously hard to contain) from moving across boundaries.  

 There are some reasons for immobility, of course, such as the inapplicability of 

temperate grain hybrids to tropical agriculture. But economists have spent much of the 

last thirty years investigating models in which what we have collapsed into A can be 

modeled in various ways. Most notably, A may represent the fruits of research and 

development activity (knowledge capital) or it may in part represent human capital 

acquired through improved education, training, and health of the work force. The 

models that we examine in Romer’s Chapters 3 and 4 introduce some basic models. 

Growth models and the environment 

 In section 1.8, Romer presents a very basic introduction to how depletable re-

sources and pollution can be introduced into the Solow model. The models Romer 

includes are a tantalizing introduction to a complex issue and should not be taken as 

the last word on the subject. (Then again, this warning could apply to almost every-

thing in this course.) 

 The analysis of the natural resource model on pages 38–40 should be fairly straight-

forward if you have understood the basic mechanics of the Solow model. Note that 

the production function in Romer’s equation (1.41) has constant returns to scale in the 

four factors of production, and thus decreasing returns in labor and capital. 

 As Romer notes in the section titled “A Complication” starting on page 41, the 

assumption of a Cobb-Douglas production function is not an innocuous one in this 

case. The Cobb-Douglas (or any other production function) makes very specific as-

sumptions about how production behaves as particular inputs become very scarce. We 

have little experience with entropic depletion of resources, so the reasonableness of the 

Cobb-Douglas for recent data should not endow us with great confidence that it is 

appropriate as resources run out. The literature on environmental effects in growth 

models is still young; no doubt many important theoretical results and empirical as-

sessments will emerge in the coming decades. 
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