
Econ 312

Monday, April 6

Vector Autoregression and Vector Error-Correction 
Models

Reading: Online time-series Chapter 5

Class notes: Pages 117 to 123



Today’s Far Side offering

You may have noticed that the board outside 
my office tends to have a lot of  dog comics, 
while Noel’s has a lot of  cat comics. I’m 
especially fond of  comics in which dogs are 
asserting their obvious superiority to cats.
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Context and overview

• We have talked a lot about estimating dynamic economic models 
with distributed lags of  various kinds
• All of  these models have presumed that we were able to establish 

exogeneity

• In many time-series applications (especially in macro) we cannot be 
confident that any of  the variables is exogenous

• Vector autoregression was developed in the 1980s (Sims and 
others) to represent the reduced-form of  a dynamic model that can 
be estimated by OLS without making strong assumptions about 
exogeneity
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Simultaneous systems of equations

• We have not yet discussed estimation of  systems of simultaneous 
equations, but we will later in the class

• In a simultaneous system, we have multiple endogenous variables 
and an equal number of  equations 
• For example, price and quantity as endogenous variables and supply and 

demand curves as equations

• Such simultaneous systems cause trouble because there is usually 
an endogenous variable on the right-hand side
• Price is endogenous in both the demand curve and the supply curve

• We’ll study the instrumental-variables model for estimating the 
structural form of  such models later
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Reduced forms

• One solution: Solve out the endogenous variables to get the 
“reduced form”
• Reduced-form system expresses each endogenous variable solely as a 

function of  exogenous variables

• Supply-demand system: One equation for price and one for quantity, with 
all exogenous variables that affect either supply or demand on the right-
hand side of  both reduced-form equations

• Because there are no endogenous variables on the right, the 
reduced-form equations can usually be estimated by OLS

• Neither reduced-form equation is “demand” or “supply;” both are 
combinations of  both

• If  the model is “identified,” then we can reconstruct the demand 
and supply equations from the coefficients of  the reduced form

5



Idea of vector autoregression (VAR)

• Identification is very problematic in dynamic macroeconomics
• Nothing is really exogenous

• Everything evolves together over time

• VAR models allow us to perform some tasks in dynamic models 
without identification
• Forecasting

• Granger “causality” tests

• Other tasks require us to make identification assumptions
• Estimating the effects of  a shock to one variable on others

• Decomposing the variation in a variable into parts attributable to various 
shocks

• Variables in VARs should be stationary 6



A simple 2-variable model

• Following the time-series chapters and the daily problem, suppose 
we have a structural model of  y and x

• Both y and x depend on current and lagged values of  both variables

• Epsilon terms are the “shocks” to x and y

• We assume that they are white noise
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Reduced-form solution

• The exogenous variables are just lagged x and y and the two shocks

• The reduced form expresses current x and y as functions solely of  
these exogenous variables

• Solving:

• BOTH equations contain parameters from BOTH structural equations

• The “error terms” of  BOTH equations contain BOTH shocks
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Reduced form as VAR

• We give new names to the complicated coefficients in the reduced 
form:
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Error terms in VAR equations

• Error terms in the VAR equations contain BOTH shocks:

• Properties:
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Estimating the VAR

• We can estimate the VAR as a set of  two OLS equations

• There can be m > 2 variables

• But each variable adds regressors to all equations

• There can be p > 1 lags

• Use AIC or Schwartz/Bayesian IC to figure out how many lags are 
required

• Each VAR equation has m  p variables on the right
• m  p gets big quickly!
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Using estimated VAR without identification

• Forecast y and x by running the VAR equations forward assuming 
zero (the expected value) for the error terms v

• Attempt to infer causality using a controversial (but common) 
technique developed by Granger
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Granger causality

• Suppose that we fail to reject 

• Lagged y does not help us predict x given the past behavior of  x
• This means that we cannot conclude that y “Granger causes” x

• If  we fail to reject                      then lagged x does not help us 
predict y and we cannot conclude that x Granger causes y

• Any of  four outcomes is possible: Neither may Granger cause the 
other, both may Granger cause each other, or Granger causality 
can run in either single direction
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Is Granger causality really causality?

• In general, correlation does not imply causality

• Granger causality is only plausible if  we assume
• Causality is NEVER purely instantaneous (just period t causing period t)

• That the present cannot cause the past

• That there is no third variable missing from the system that causes both

• Because of  the last assumption, you can get different results 
between x and y if  you add z to the system

• Questionable restrictions, but Granger causality has been used a lot

14



Identification of VARs

• Identification assumptions may allow us to recover the parameters 
of  the structural system from the reduced-form system

• We estimate

• Use estimates of   and  parameters to infer parameters of
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Are there enough parameters?

• Reduced form has 6 coefficients, 2 error variances, and 1 
covariance = 9 pieces of information

• Structural form has 8 coefficients, 2 error variances, and 1 
covariance = 11 things we want to know

• We need 11 – 9 = 2 additional restrictions to identify model
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Possible identification restrictions

1. Nearly always assume independence of structural shocks, xy = 0

2. Most common second assumption is either 0 = 0 or 0 = 0
• If  0 = 0, then y affects x only with a lag

• If  0 = 0, then x affects y only with a lag

• This allows us to interpret the contemporaneous correlation between x and y
by making an assumption about instantaneous causality

• Other assumptions may be used in place of  2: “structural VARs” or 
“identified VARs”
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With more than two variables

• With m variables and equations, you need m(m – 1)/2 assumptions 
in addition to independence of  shocks

• Most common assumption is “ordering” of  contemporaneous 
causality
• Assume an order of  the variables w, x, y, z such that variables later on the 

list have no contemporaneous effect on those before them

• Here, w can affect all variables immediately; x only affects y and z right 
away and affects w only with lag (#1); y only affects z now and affects w
and x with lag (#2, 3); and z has only lagged effects on the others (#4, 5, 6)

• This is 4(4 – 1)/2 = 6 assumptions, as required
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Impulse-response functions

• Impulse-response function: Most common use of  identified VARs

• IRF tells us how a structural shock to either variable affects both 
variables:

• Two-variable system means 2  2 IRF sequences

• Usually presented as set of  graphs with s on the horizontal axis
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IRFs only possible in identified VARs

• You must identify your VAR with appropriate assumption(s) to 
calculate impulse-response functions
• In general, both reduced-form v error terms are non-zero in each period

• These cannot be interpreted as shocks to either x or y: combinations of  
both

• Must know how to interpret contemporaneous correlation in order to 
distinguish structural shocks to x from structural shocks to y

• Different identifying assumptions may lead to different results
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Example of IRFs from Romer & Romer (2010)
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Variance decompositions

• Another, less-common use of  identified VARS

• Answers the question “How much of  the variance in yt + s is due to 
shocks to xt vs. shocks to yt?”

• Formulas can be found in time-series textbooks

22



VARs in Stata

• var varlist , lags(1/4) does estimation with lags 1 through 4
• Can also include exog(vars) to add variables but not equations

• After var command:
• fcast compute (then fcast graph)

• oirf (create, graph, table)

• oirf does ordered identification (specific order explicitly or list in desired order)

• irf alone assumes neither has immediate effect

• vargranger

• varlmar (test for autocorrelated residuals)

• varsoc (criteria for lag length)

• varstable (check stability of  model)

• var svar does structural VARs
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Vector error-correction (VEC) models

• Can do VAR systems with cointegrated variables using vector 
error-correction

• There can be as many as m – 1 cointegrating relationships among 
m variables

• VEC model is:
• VAR in the differences of the variables (which are stationary)

• Adding error-correction terms corresponding to any or all cointegrating 
relationships (which are also stationary)

• Stata vec command will estimate and analyze VEC systems
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Review and summary

• Vector autoregression is a method of  estimating the dynamic 
relationship among a set of  variables 

• Without any identifying assumptions, we can use VARs for 
forecasting and testing Granger causality

• With appropriate identifying assumptions, we can estimate 
impulse-response functions to see how shocks to any variable 
affects others, and we can use variance decompositions to estimate 
which kinds of  shocks are most important to the movement of  
each variable

• With cointegrated variables, we use the vector error-correction 
model
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Something different: A puzzle

Given that this is a quantitative 
class, a numerical puzzle seems 
appropriate:

What is the pattern in the following 
numerical sequence?

8, 5, 4, 9, 1, 7, 6, 10, 3, 2

[Using the Internet to find the 
solution is cheating!]
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What’s next?

• This class ends our segment on time-series analysis
• (Whew!)

• In the next section we start looking at models for pooled and 
panel-data samples: those that combine a time-series dimension 
with cross sections
• In the first class (April 8) we will consider pooled samples and the fixed-

effects estimator for panel samples

• In the second (April 10) we will introduce the random-effects estimator 
and do a detailed example together
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