

Wednesday, April 22 Limited Dependent Variables: Probit and Logit

Readings: Wooldridge, Section 17.1

Class notes: 154 - 159

Today's Far Side offering

How we're all feeling at this time of year!

Context and overview

- The final major section of the course deals with dependent variables that have limited ranges, not $-\infty$ to $+\infty$
- This class looks in detail at models of a **dummy dependent variable**
 - Linear probability model is simple
 - **Probit and logit** models are more statistically reasonable, but require careful interpretation of the coefficients
- In the next few classes we will examine other situations in which the dependent variable is limited in range or discontinuous

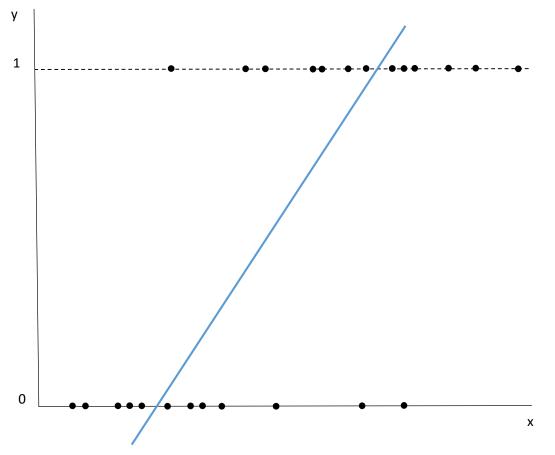
Linear probability model

- y = 0 or 1, so $E(y_i | x_i) = \Pr[y_i = 1 | x_i]$
- Linear probability model

 (LPM) just applies OLS by
 making this a linear function
 of the *x* variables:

$$\Pr[y_i = 1 \mid x_i] = E(y_i \mid x_i) = \beta_0 + \beta_1 x_i$$

 Problem #1: line doesn't fit data well



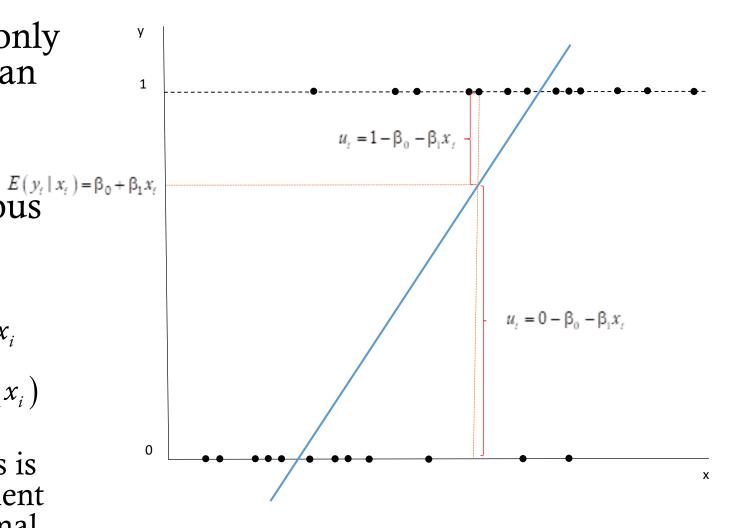
Error term in LPM

- Problem #2: Since *y* can only be 0 or 1, the error term can only be $1 - \beta_0 - \beta_1 x_i$ or $0 - \beta_0 - \beta_1 x_i$
- *u* is **discrete**, not continuous
 - Bernoulli distribution, not normal

$$\Pr\left[u_i=1-\left(\beta_0+\beta_1x_i\right)\right]=\beta_0+\beta_1x_i$$

$$\Pr\left[u_i = -(\beta_0 + \beta_1 x_i)\right] = 1 - (\beta_0 + \beta_1 x_i)$$

• Sum of Bernoulli variables is normal in limit, so coefficient estimates may still be normal

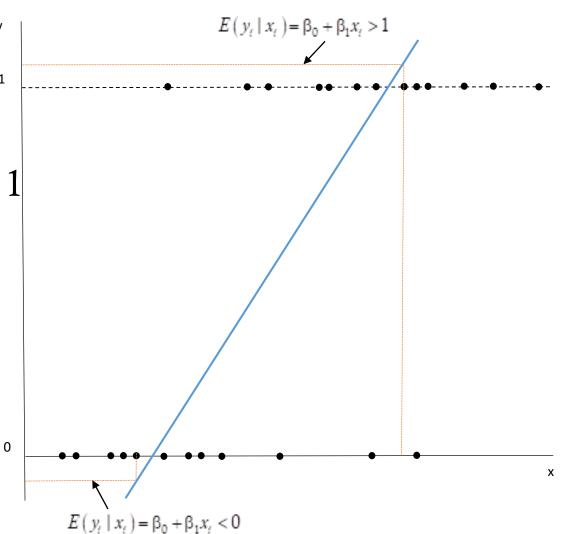


Prediction in LPM

• Problem #3: For extreme values of x we always **predict** Pr[y=1|x] < 0 or Pr[y=1|x] > 1

У

- Also has heteroskedasticity
- Bottom line:
 - LPM is **simple**
 - Might be **usable** for *x* close to sample mean
 - Simply not the best model!



Alternative models: Probit and logit

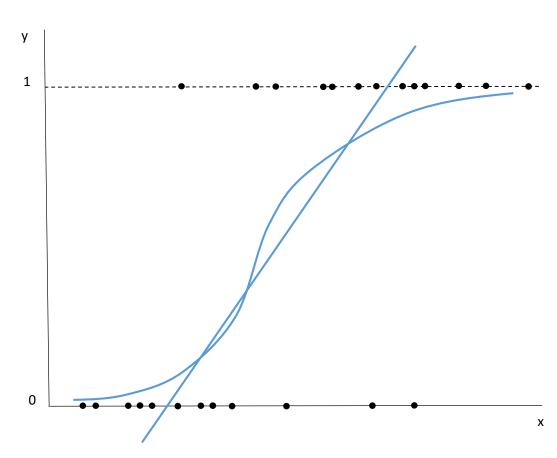
- $E(y_i | x) = \Pr[y_i = 1 | x] = G[\beta_0 + \beta_1 x_i] = G(z_i)$
- **Probit** fits cumulative normal distribution function

$$G(z_i) = \Phi(z_i) = \int_{-\infty}^{z_i} \phi(\zeta) d\zeta = \int_{-\infty}^{z_i} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}\zeta^2} d\zeta$$

• **Logit** fits cumulative logistic distribution function

$$G(z_i) = \Lambda(z_i) = \frac{1}{1 + e^{-z_i}} = \frac{e^{z_i}}{1 + e^{z_i}}$$

• Similar shapes that fit the 0/1 data better than linear



Estimation of probit and logit

- Nonlinear maximum likelihood
 - Discrete density function:

 $\Pr[y_{i} = 1 | x_{i}, \beta] = G(x_{i}\beta), \Pr[y_{i} = 0 | x_{i}, \beta] = 1 - G(x_{i}\beta)$

- Or $f(y_i | x_i, \beta) = [G(x_i\beta)]^{y_i} [1 G(x_i\beta)]^{(1-y_i)}, y_i = 0, 1$
- **Log likelihood function** with IID sample: $\ln L(\beta; y, x) = \sum_{i=1}^{n} \left[y_i \ln \left[G(x_i \beta) \right] + (1 - y_i) \ln \left[1 - G(x_i \beta) \right] \right].$
- Choose β , evaluate $\ln L$, then **search** over β to find maximum
- Estimator is consistent, asymptotically normal/efficient

Goodness of fit and hypothesis tests

- Goodness of fit always looks bad:
 - Fraction predicted correctly, predicting 1 for $G(x_i\hat{\beta}) > 0.5$
 - Pseudo-*R*²:

$$1 - \frac{\ln L(\hat{\boldsymbol{\beta}}; x, y)}{\ln L(\boldsymbol{\beta}_{Z}; x, y)}, \boldsymbol{\beta}_{Z}' \equiv (\overline{y}, 0, 0, ..., 0)$$

- **Likelihood-ratio test:** $2[\ln L_u \ln L_r] \sim \chi_q^2$.
- Can also do the **standard** *t* **test**:

$$t = \frac{\hat{\beta}_j - c}{se(\hat{\beta}_j)} \sim t_{(n-k-1)}$$

Interpretation of coefficients

• In OLS (or LPM):
$$\beta_j = \frac{\partial E[y_i | x_i]}{\partial x_j}$$

• In probit or logit: $\beta_j = \frac{\partial z}{\partial x_j}$ with no logical interpretation

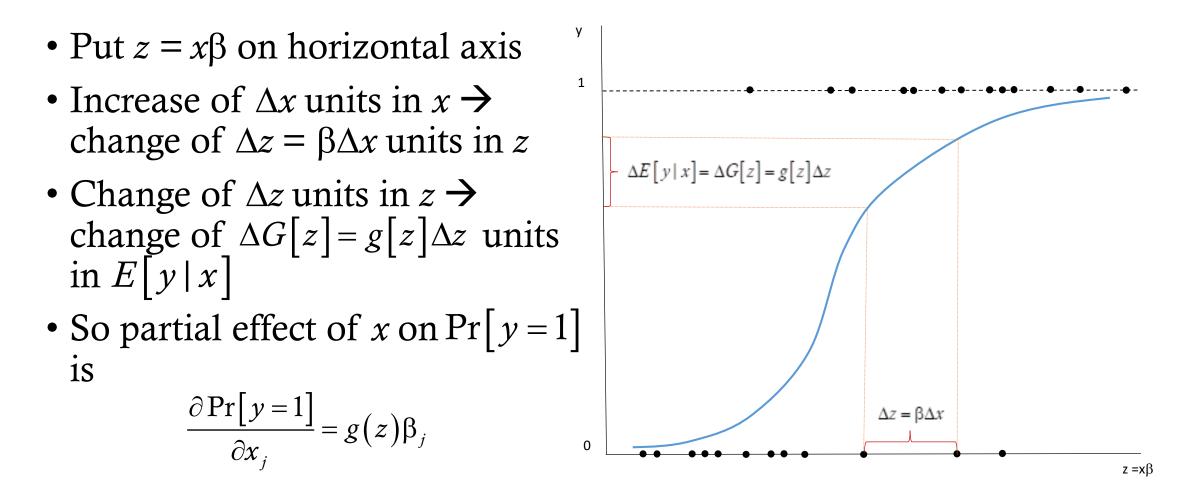
• Remember that we define $z = x\beta$

• For continuous regressor, we want

$$\frac{\partial \Pr[y=1]}{\partial x_j} = \frac{d \Pr[y=1]}{dz} \frac{\partial z}{\partial x_j} = G'(z)\beta_j = g(z)\beta_j,$$

• β measures effect of *x* on *z*, *g*(*z*) measures effect of *z* on Pr[*y* = 1]

Geometric interpretation of coefficients



Odds ratio in logit

$$\Pr[y_{i} = 1 | x_{i}] = \Lambda(x_{i}\beta) = \frac{e^{x_{i}\beta}}{1 + e^{x_{i}\beta}}$$
$$(1 + e^{x_{i}\beta})\Lambda(x_{i}\beta) = e^{x_{i}\beta}$$
$$\Lambda(x_{i}\beta) = e^{x_{i}\beta} - \Lambda(x_{i}\beta)e^{x_{i}\beta} = (1 - \Lambda(x_{i}\beta))e^{x_{i}\beta}$$
$$e^{x_{i}\beta} = \frac{\Lambda(x_{i}\beta)}{1 - \Lambda(x_{i}\beta)} = \frac{\Pr[y_{i} = 1 | x_{i}]}{\Pr[y_{i} = 0 | x_{i}]} = \text{"odds ratio"}$$

- β is the effect of *x* on the "log odds ratio"
- Stata table reports e^{β} as proportional effect of x on odds
 - Always > 0, $e^{\beta} > 1 \rightarrow x$ increases odds, $e^{\beta} < 1 \rightarrow x$ decreases odds
 - Depends on *x*: set to mean

Partial effects in probit

• Probit uses normal rather than logistic distribution

$$\frac{\partial \Pr[y=1]}{\partial x_{j}} = \Phi'(z)\beta_{j} = \phi(z)\beta_{j} = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(x_{i}\beta)^{2}}\beta_{j}$$

- Again, this depends on *x*, so we typically evaluate the effect at the means of the regressors
- Partial effects in both probit and logit have same sign as coefficient and can be tested by $\beta_j = 0$
- If x is a dummy, we want $\Pr[y=1 | x_j = 1] \Pr[y=1 | x_j = 0]$

Probit and logit in Stata

Probit

- probit reports coefficients
- dprobit reports partial effects (or effects of $0 \rightarrow 1$ for dummies) evaluated at means of all x
- Use margins command to evaluate at other *x*
- Same *t* statistics and tests from both

Logit

- logit reports coefficients
- logistic reports effect of *x* on log odds ratio at means
- Remember that zero effect means $e^{\beta} = 1$
- Tricky to interpret; see notes

Issues in probit and logit estimation

- Nonlinearity makes finding best estimator less reliable
 - Algorithm can break down in cases of high multicollinearity
 - Complex models can take a long time to converge
- Omitted-variable bias affects all coefficients, even if x_j not correlated
- Heteroskedasticity makes estimator inconsistent
 - White's robust standard error fixes the standard error, but not the coefficient
 - Try to rescale the model to reduce probability of heteroskedasticity

Review and summary

- When the dependent variable is a 0/1 dummy we have several choices of estimators
 - Linear probability model is simple, but unrealistic
 - **Probit** and **logit** are better suited to the situation
- Both probit and logit use **cumulative probability distribution functions** to approximate relationship instead of straight line
- Must be estimated by nonlinear least squares
- Coefficients no longer have the usual interpretations
- Stata can transform coefficients into meaningful "partial effects"

Another bad economist joke ...

"Let us remember the unfortunate econometrician who, in one of the major functions of his system, had to use a proxy for risk and a dummy for sex."

-- Fritz Machlup

-- Taken from Jeff Thredgold, On the One Hand: The Economist's Joke Book

What's next?

In the next class, we discuss estimators appropriate to other unusual dependent variables:

- Generalizing probit/logit to more than two choices (0/1/2, for example)
- Models for **ordered dependent variables** (A > B > C)
- Models for **count dependent variables** (0, 1, 2, 3, ...)