
Econ 312
Wednesday, April 22

Limited Dependent Variables: Probit and Logit

Readings: Wooldridge, Section 17.1

Class notes: 154 - 159



Today’s Far Side offering

How we’re all feeling at 
this time of  year!
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Context and overview

• The final major section of  the course deals with dependent variables 

that have limited ranges, not – to +

• This class looks in detail at models of  a dummy dependent variable

• Linear probability model is simple

• Probit and logit models are more statistically reasonable, but require careful 

interpretation of  the coefficients

• In the next few classes we will examine other situations in which the 

dependent variable is limited in range or discontinuous
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Linear probability model

• y = 0 or 1, so

• Linear probability model 

(LPM) just applies OLS by 

making this a linear function

of  the x variables: 

• Problem #1: line doesn’t fit 

data well
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Error term in LPM
• Problem #2: Since y can only 

be 0 or 1, the error term can 
only be                    or

• u is discrete, not continuous
• Bernoulli distribution, not 

normal

• Sum of  Bernoulli variables is 
normal in limit, so coefficient 
estimates may still be normal
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Prediction in LPM

• Problem #3: For extreme 
values of  x we always predict

• Also has heteroskedasticity

• Bottom line:
• LPM is simple

• Might be usable for x close to 
sample mean

• Simply not the best model!
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Alternative models: Probit and logit
•

• Probit fits cumulative normal 
distribution function

• Logit fits cumulative logistic 
distribution function

• Similar shapes that fit the 0/1 
data better than linear
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Estimation of probit and logit

• Nonlinear maximum likelihood
• Discrete density function:

• Or

• Log likelihood function with IID sample: 

• Choose , evaluate lnL, then search over  to find maximum

• Estimator is consistent, asymptotically normal/efficient
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Goodness of fit and hypothesis tests

• Goodness of  fit always looks bad:
• Fraction predicted correctly, predicting 1 for

• Pseudo-R2: 

• Likelihood-ratio test:

• Can also do the standard t test:  
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Interpretation of coefficients

• In OLS (or LPM):

• In probit or logit:                 with no logical interpretation

• Remember that we define z = x

• For continuous regressor, we want

•  measures effect of  x on z, g(z) measures effect of  z on Pr[y = 1]
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Geometric interpretation of coefficients

• Put z = x on horizontal axis

• Increase of  x units in x 
change of  z = x units in z

• Change of  z units in z 
change of                            units 
in

• So partial effect of  x on                
is  
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Odds ratio in logit

•  is the effect of  x on the “log odds ratio”

• Stata table reports e as proportional effect of  x on odds
• Always > 0, e > 1  x increases odds, e < 1  x decreases odds

• Depends on x: set to mean 12
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Partial effects in probit

• Probit uses normal rather than logistic distribution

• Again, this depends on x, so we typically evaluate the effect at the 
means of  the regressors

• Partial effects in both probit and logit have same sign as coefficient 
and can be tested by j = 0

• If  x is a dummy, we want 
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Probit and logit in Stata

Probit

• probit reports coefficients

• dprobit reports partial effects (or 
effects of  0  1 for dummies) 
evaluated at means of  all x

• Use margins command to 
evaluate at other x

• Same t statistics and tests from 
both

Logit

• logit reports coefficients

• logistic reports effect of  x on log 
odds ratio at means

• Remember that zero effect 
means e = 1

• Tricky to interpret; see notes
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Issues in probit and logit estimation

• Nonlinearity makes finding best estimator less reliable
• Algorithm can break down in cases of  high multicollinearity

• Complex models can take a long time to converge

• Omitted-variable bias affects all coefficients, even if  xj not 
correlated

• Heteroskedasticity makes estimator inconsistent
• White’s robust standard error fixes the standard error, but not the 

coefficient

• Try to rescale the model to reduce probability of  heteroskedasticity
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Review and summary

• When the dependent variable is a 0/1 dummy we have several 
choices of  estimators
• Linear probability model is simple, but unrealistic

• Probit and logit are better suited to the situation

• Both probit and logit use cumulative probability distribution 
functions to approximate relationship instead of  straight line

• Must be estimated by nonlinear least squares

• Coefficients no longer have the usual interpretations

• Stata can transform coefficients into meaningful “partial effects”
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Another bad economist joke …

“Let us remember the unfortunate econometrician who, in one of  the 
major functions of  his system, had to use a proxy for risk and a dummy 
for sex.”

-- Fritz Machlup

--Taken from Jeff  Thredgold, On the One Hand: The Economist's Joke Book
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What’s next?

In the next class, we discuss estimators appropriate to other unusual 
dependent variables:

• Generalizing probit/logit to more than two choices (0/1/2, for 
example)

• Models for ordered dependent variables (A > B > C)

• Models for count dependent variables (0, 1, 2, 3, …)
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