
Econ 312

Wednesday, April 17

Identification in Simultaneous Equations

Readings: Wooldridge, Chapter 16

Class notes: 142 - 149



Today’s Far Side offering

Hmmmm
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Context and overview
• We have introduced the instrumental-variables estimator for 

equations in which there are endogenous regressors

• We now begin a discussion of  estimation of  systems of  equations

• The focus today will be conditions that allow the identification of  
structural parameters in our models

• We will examine this in the context of  an extended example of  a 
supply-demand system with price and quantity endogenous
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System estimation vs. single-equation estimation

• Suppose we have an equation in which one of  the regressors is 
endogenous

• What is the model that determines the endogenous regressor?
• Need that in single-equation IV to choose instruments

• Are we interested in the parameters of  the “other equation” that 
determines the endogenous regressor?
• If  so, then we should estimate both equations

• If  not, then it’s usually fine to use IV on the single equation of  interest

• System estimation involves estimating all of  the related equations
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The identification problem

• In VARs, we had to make a set of  assumptions in order to identify 
the structural shocks and do impulse-response functions

• Exactly the same problem arises in instrumental-variables 
estimation
• We must assume that our instruments are uncorrelated with u and that the 

do not directly affect y

• These are our identifying assumptions or restrictions that allow us to do 
instrumental variables and estimate structural parameters

• We examine this problem through an extended example of  a two-
equation demand-supply system
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Model I: No exogenous variables

• Set Q equal across the two equations and solve for P (See notes)

• Plug this value of  P back into one equation and solve for Q

• The parameters are the coefficients of  the reduced-form equations

• We can estimate these by OLS
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Identification in Model I

• Structural parameters wanted (4): 0, P , 0, P

• Coefficients we can estimate (2): P,0, Q,0

• No way to find 4 structural parameters from only 2 reduced-form 
parameters
• We can’t find any of the structural parameters here

• Nothing is identified: neither demand nor supply equation
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Graphical illustration

• How do we get a supply or 
demand curve from the scatter 
of  points?
• We cannot

• All of  the variation is due to u
and v

• There is no way to identify 
which points are demand shifts 
and which are supply shifts

• Neither the demand curve nor 
the supply curve is identified
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Model II: Income (M) affects demand

• Solving for reduced form as before

• If  we estimate the  parameters by OLS we have 4 coefficients

• There are now 5 structural parameters, so identification cannot be 
complete
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Identification in Model II

• Structural parameters wanted (5): 0, P , M, 0, P

• Coefficients we can estimate (4): P,0, Q,0, P,M, Q,M

• P in the supply equation can be identified! Likewise 0 (in notes)

• Supply equation is identified by presence of  exogenous variable in 
demand equation. Demand equation is still not identified
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Graphical illustration
• Suppose that the blue points 

have different levels of  income

• We know that income affects 
demand but not supply

• We can use the variation in 
income to represent shifts in 
the demand curve that identify 
a supply curve (the blue line)

• We have no variable that shifts 
(only) the supply curve, so 
cannot identify demand curve
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Model III: Income (M) affects both curves

• Solving for reduced form,

• If  we estimate the  parameters by OLS we have 4 coefficients

• There are 6 structural parameters, so we again do not have enough 
information to identify structural parameters uniquely

12

0

0

Demand curve:  

Supply curve:  

P M

P M

Q P M u

Q P M v

      

    

0 0
0

0 0
0 .

M M
P PM P

P P P P P P

P P M P M P P P
Q QM Q

P P P P P P

u v
P M M

u v
Q M M

    
        
     

         
        

     



Identification in Model III

• Structural parameters wanted (6): 0, P , M, 0, P , M

• Coefficients we can estimate (4): P,0, Q,0, P,M, Q,M

• No longer possible to identify any parameters

• Because M affects BOTH curves, we cannot use variations in M to 
trace out the supply curve

• The crucial identifying restriction that worked to identify the 
supply curve in Model II:
• M affected demand BUT NOT SUPPLY

• Now that M affects both curves, we cannot use it for identification
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Model IV: M affects demand, R affects supply

• Solving for reduced form yields

• If  we estimate the  parameters by OLS we have 6 coefficients

• There are now 6 structural parameters, so identification is at least 
possible
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Identification in Model IV

• Structural parameters wanted (6): 0, P , M, 0, P, R

• Coefficients we can estimate (6): P,0, Q,0, P,M, Q,M, P,R, Q,R

• All of  the parameters in BOTH equations can be identified
• Supply equation is identified by M in demand equation

• Demand equation is identified by R in supply equation
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Graphical illustration
• Blue points have different levels 

of  income, which affects 
demand but not supply

• Red points have different levels 
of  rainfall, which affects supply 
but not demand

• Variation in income identifies a 
supply curve (blue line)

• Variation in rainfall identifies a 
demand curve (red line)
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Model V: M affects demand, R and W affect supply

• Solving for reduced form yields

• If  we estimate the  parameters by OLS we have 8 coefficients

• There are now 7 structural parameters, so identification is at least 
possible and we might have EXTRA information 
(overidentification)
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Identification in Model IV

• Structural parameters wanted (7): 0, P , M, 0, P, R, W

• Coefficients we can estimate (8): P,0, Q,0, P,M, Q,M, P,R, Q,R, P,R, Q,R

• We can do the same thing as Model IV to identify all parameters, but now

• With TWO variables shifting the supply equation (and not in demand), 
we have two different choices of  how to identify

• Model is overidentified

• Do we get the same answer? Is                  ?
• Testable overidentifying restriction
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Graphical illustration
• Blue points have different levels 

of  income; affects D but not S

• Red points have different levels 
of  rainfall; affects S but not D

• Purple points have different 
wage; affects S but not D

• Variation in income identifies a 
supply curve (blue line)

• Variation in rainfall OR 
variation in wage identifies a 
demand curve (red line or 
purple line)
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Basic principles of identification

• For each endogenous regressor in ONE equation, you need at least 
one exogenous variable that is in the OTHER equation but not the 
first
• This exogenous variable is an instrument, just like in IV

• For the system to be identified, each equation must be identified

• If  we have extra exogenous variables in the other equation, then the 
first equation is overidentified
• Exactly the same as having excess instruments in IV

• We can test the overidentifying restrictions to assess model validity
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Review and summary

• In this lecture, we have considered the identification of  structural 
coefficients in systems of  equations

• We can only estimate reduced forms (using OLS)

• If  an equation is identified, then its structural parameters can be 
obtained as functions of  the (estimable) reduced-form coefficients

• It is possible for only some of  the equations in a system to be 
identified

• If  there are multiple alternative ways of  estimating the structural 
parameters of  an equation from the reduce-form coefficients, then 
the equation is overidentified; we can test the validity of  the model 
by testing overidentifying restrictions
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Something different
If  these were normal times, I’d 
be inviting you to come and see 
our marimba band perform on 
Saturday at our teacher/leader’s 
annual concert. 

This year, the best I can do is 
offer a clip from last year’s 
performance, recorded on our 
old camcorder with crappy 
sound (even worse when 
compressed here!) and people 
walking in front of  the camera.
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What’s next?

• In this class, we learned the details of  identification in systems of  
simultaneous regression equations

• Our next class (April 20) will consider how to estimate entire 
systems of  equations together rather than separately

• We will learn the method of  seemingly unrelated regressions for 
systems with no endogenous regressors

• We will then combine this method with 2SLS to get the three-stage 
least-squares estimator for systems of  equations
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