

Econ 312

Friday, April 10 Random-Effects Model

Reading: Wooldridge, Section 14.2 Class notes: 129 - 132

Todav's Far Side offering

My calendar has a lot less on it these days, but it's not *quite* this boring!

Jurassic calendars

Context and overview

- We presented the **fixed-effects model** for panel-data estimation in the last class (April 8)
- We now consider the **random-effects model** as an alternative
- It has some **advantages** over fixed effects:
 - More degrees of freedom
 - Allows regressors that do not vary across time
- It also a big **disadvantage**: It is often inconsistent
 - Hausman test can test for this
- We also do a detailed econometric **example** using panel-data estimators

Setup of random-effects (RE) model

- As before, $y_{it} = \beta_{0i} + \beta_1 x_{1it} + \beta_2 x_{2it} + u_{it}$
 - Intercept term differs across cross-sectional units
- In fixed-effects model, we think of β_{0i} as *n* constants to be estimated
- In random-effects model, differences in intercept across *i* are random:

$$\beta_{0i} = \overline{\beta}_0 + a_i$$
$$E(a_i) = 0$$
$$\cos(a_i, a_j) = 0, \ i \neq j$$
$$\operatorname{var}(a_i) = \sigma_a^2$$

Regression in RE model

$$\begin{aligned} \mathbf{v}_{it} &= \left(\overline{\beta}_0 + a_i\right) + \beta_1 x_{1it} + \beta_2 x_{2it} + u_{it} \\ &= \overline{\beta}_0 + \beta_1 x_{1it} + \beta_2 x_{2it} + \left(a_i + u_{it}\right) \\ &= \overline{\beta}_0 + \beta_1 x_{1it} + \beta_2 x_{2it} + v_{it} \end{aligned}$$

• Error-components model: *v* has pattern of autocorrelation between observations on same *i*

$$\operatorname{corr}(v_{it}v_{is}) = \frac{\operatorname{cov}(v_{it}, v_{is})}{\sqrt{\operatorname{var}(v_{it})\operatorname{var}(v_{is})}} = \frac{\sigma_a^2}{\sigma_a^2 + \sigma_u^2} = \rho$$

• Estimate ρ with correlation of residuals within units, then do **feasible GLS**

Assumptions of RE model

$$E(v_{it}) = 0 \qquad \operatorname{cov}(v_{it}, v_{js}) = 0, \ i \neq j$$

$$\operatorname{var}(v_{it}) = \sigma_{u}^{2} + \sigma_{a}^{2} \qquad \operatorname{cov}(u_{ij}, x_{kij}) = 0, \ k = 1, 2, \dots, K$$

$$\operatorname{cov}(v_{it}, v_{is}) = \sigma_{a}^{2}, \ t \neq s \qquad \operatorname{cov}(a_{i}, x_{kit}) = 0, \ k = 1, 2, \dots, K$$

- Last assumption is most likely to be problematic
 - Is random effect really uncorrelated with regressors?
 - Random effect is unobserved variables that have values specific to i
 - We would often expect to be correlated with *x* values specific to *i*
- RE estimators are **biased and inconsistent** if last assumption fails

Testing for RE vs. OLS: Is $var(a_i) = 0$?

- If a doesn't vary across i, then no correlations in v
- Positive a_i is positive expected value of v_{it} for that i• Estimate with $\hat{a}_i = \frac{1}{T} \sum_{t=1}^{T} \hat{v}_{it}$

• Then estimate
$$\hat{\sigma}_a^2 = \frac{1}{n} \sum_{i=1}^n \hat{a}_i^2$$

- Test $H_0: \sigma_a^2 = 0$ (one-tailed) with $LM = \sqrt{\frac{nT}{2(T-1)}} \left| \frac{\sum_{i=1}^n \left(\sum_{t=1}^T \hat{v}_{it}\right)^2}{\sum_{i=1}^n \sum_{t=1}^T \hat{v}_{it}^2} 1 \right| \sim N(0,1)$
- Reject \rightarrow OLS is inefficient

Feasible GLS estimator for RE model

- Use OLS residuals to estimate σ_a^2 and σ_u^2
- Calculate $\theta = 1 \frac{\sigma_u}{\sqrt{T\sigma_a^2 + \sigma_u^2}}$
- Quasi-de-mean model to get v^* error term that satisfies OLS assumptions

$$y_{it}^{*} \equiv y_{it} - \theta \overline{y}_{i}$$

$$x_{0it}^{*} \equiv 1 - \theta$$

$$x_{kit}^{*} \equiv x_{kit} - \theta \overline{x}_{ki}, \ k = 1, 2, \dots, K$$

$$v_{it}^{*} \equiv v_{ij} - \theta \overline{v}_{i}$$

• Random effects = fixed effects if $\theta = 1$ (as $T \rightarrow \infty$)

Problem with random effects

- Unit-specific error term *a_i* represents **omitted variables** that are constant over time within each cross-sectional unit *i*
- Can we assume that these are **independent** of included regressors?
 - Probably not in many/most cases
 - Random-effects estimator is biased and inconsistent if not independent
- Hausman test compares results of RE and FE estimator
 - Null hypothesis is that RE is similar and valid
 - Reject if results of FE and RE differ significantly
- Common practice: Use RE unless Hausman test rejects validity

Sample application: Seat belts

Variable Definition						
fatalityrate	Number of fatalities per million of traffic miles					
sb_usage	Seat belt usage rate					
speed65	Binary variable for 65 mile per hour speed limit					
speed70	Binary variable for 70 or higher mile per hour speed limit					
ba08	Binary variable for blood alcohol limit $\leq .08\%$					
drinkage21	Binary variable for age 21 drinking age					
income	Per capita income					
age	Mean age					
primary	Binary variable for primary enforcement of seat belt laws					
secondary	Binary variable for secondary enforcement of seat belt laws					
vmt	Millions of traffic miles per year. (Note: Number of fatalities =					
	fatalityrate×vmt)					
state	State					
year	Year					
fips	State ID Code					

Variable Definitions

Summary statistics

. summ

Variable	Obs	Mean	Std. Dev.	Min	Max
state	0				
year	765	1990	4.32332	1983	1997
fips	765	28.96078	15.68709	1	56
vmt	765	41447.73	43961.99	3099	285612
fatalityrate	765	.0214895	.0061713	.0083273	.0454701
sb_useage	556	.5288518	.1701859	.06	.87
speed65	765	.6457516	.4785978	0	1
speed70	765	.0705882	.2563034	0	1
drinkage21	765	.8849673	.3192701	0	1
ba08	765	.1163399	.3208418	0	1
income	765	17992.59	4811.459	8372	35863
age	765	35.13719	1.698131	28.23497	39.16958
primary	765	.1215686	.3270007	0	1
secondary	765	.4954248	.5003062	0	1

Glance at data

	state	year	fips	vmt	fatalityrate	sb_useage	speed65	speed70	drinkage21	ba08	income	age
1	AL	1983	1	31032	.0299691		0	0	0	0	9505	34.20065
2	AL	1984	1	32961	.0282758	.13	0	0	0	0	10417	34.42163
З	AL	1985	1	35091	.0251346	.17	0	0	1	0	11133	34.60257
4	AL	1986	1	34003	.0317913	. 29	0	0	1	0	11736	34.76067
5	AL	1987	1	37426	.0296852	.21	1	0	1	0	12394	34.95566
6	AL	1988	1	39684	.0258039	. 29	1	0	1	0	13288	35.13696
7	AL	1989	1	40765	.0252422	.38	1	0	1	0	14266	35.32786
8	AL	1990	1	42347	.0264718	.44	1	0	1	0	15213	35.62292
9	AL	1991	1	42924	.0259994	.47	1	0	1	0	15895	35.68874
10	AL	1992	1	45762	.0225296	.58	1	0	1	0	16817	35.83262
11	AL	1993	1	47337	.0220546	.55	1	0	1	0	17398	35.94825
12	AL	1994	1	48956	.0221219	.55	1	0	1	0	18163	36.09201
13	AL	1995	1	50628	.0220036	.52	1	1	1	1	19041	36.20575
14	AL	1996	1	51433	.0222814	.54	1	1	1	1	19838	36.38513
15	AL	1997	1	53458	.0222979	.52	1	1	1	1	20672	36.50072
16	AK	1983	2	3358	.0446694		0	0	1	0	17973	28.23497
17	AK	1984	2	3589	.0373363		0	0	1	0	18093	28.34354
18	AK	1985	2	3840	.0330729		0	0	1	0	18925	28.37282
19	AK	1986	2	4008	.0251996		0	0	1	0	18466	28.39665
20	AK	1987	2	3900	.0194872		0	0	1	0	18021	28.45325
21	AK	1988	2	3841	.0252538		0	0	1	0	18447	28.85142
22	AK	1989	2	3887	.0216105		0	0	1	0	19970	29.14895
23	AK	1990	2	3979	.0246293	.45	0	0	1	0	21073	29.58628
24	AK	1991	2	4021	.0251181	.66	0	0	1	0	21496	29.82771
25	AK	1992	2	3841	.0281177	.66	1	0	1	0	22073	30.2107
26	AK	1993	2	3918	.0301174	.69	1	0	1	0	22711	30.46439
27	AK	1994	2	4150	.0204819	.69	1	0	1	0	23417	30.75657

12

Missing data

- Some states are missing data on seat-belt usage
- This is our key regressor
- Are these data missing at random?
 - Probably not, but we don't yet have a solution
 - We'll proceed with caution

Housekeeping

- Define data as panel: xtset fips year
 - Note two state identifiers, state and fips
 - State is alphabetical and cannot be used in xtset
 - FIPS codes are standardized, numerical codes for states and territories
- Generate Inincome variable
- Spell "usage" correctly: rename sb_useage sb_usage
- Basic regression:
 - regress fatalityrate sb_usage speed65 speed70 drinkage21 ba08 lnincome age

OLS results

. regress	fatalityrate	sb_usage	speed65	speed70	drinkage21	ba08	lnincome	age
-----------	--------------	----------	---------	---------	------------	------	----------	-----

Source	SS	df	MS	Number o	fobs =	556
				F(7, 548) =	95.41
Model	.007711649	7	.001101664	Prob > F	=	0.0000
Residual	.006327757	548	.000011547	R-square	d =	0.5493
				Adj R-sq	uared =	0.5435
Total	.014039406	555	.000025296	Root MSE	=	.0034
fatalityrate	Coef.	Std. Err.	t	P> t [95% Conf.	Interval]
sb_usage	.0040684	.0012158	3.35	0.001 .	0016803	.0064565
speed65	.0001479	.0004029	0.37	0.714	0006436	.0009394
speed70	.0024045	.0005112	4.70	0.000 .	0014003	.0034086
drinkage21	.0000799	.0008756	0.09	0.927	0016401	.0017998
ba08	0019246	.0004447	-4.33	0.000	0027982	001051
lnincome	0181444	.0009311	-19.49	0.000	0199733	0163155
age	-7.22e-06	.0001089	-0.07	0.947	0002212	.0002067
cons	1965469	.0082232	23.90	0.000	1803941	.2126998
	.1909409		20.00	••••••	1000041	.2120550

Anomaly

- Higher seat-belt usage \rightarrow higher fatality rate
- Why is this happening?
 - Are there omitted variables?
- Could some of these omitted variables vary mostly across states?
 - If so, then fixed effects might proxy for them and eliminate bias
 - Use robust option in FE to get clustered standard errors

Fixed effects results

. xtreg fatalityrate sb_usage speed65 speed70 drinkage21 ba08 lnincome age , fe robust

Fixed-effects (within) regressionMGroup variable: fipsM					of obs =	556
					of groups =	51
R-sq:				Obs per	group:	
within	= 0.6868			-	min =	8
between :	= 0.1957				avg =	10.9
overall :	= 0.3896				max =	15
				F(7,50)	=	96.72
<pre>corr(u_i, Xb)</pre>	= -0.1332			Prob >	F =	0.0000
		(Std	. Err. a	djusted f	or 51 cluste	rs in fips)
		Robust				
fatalityrate	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
sb_usage	0057748	.0016693	-3.46	0.001	0091276	002422
speed65	000425	.0004555	-0.93	0.355	0013399	.0004898
speed70	.0012333	.0003483	3.54	0.001	.0005337	.0019329
drinkage21	.0007453	.0007184	1.04	0.305	0006976	.0021883
ba08	0013775	.0003751	-3.67	0.001	0021308	0006241
lnincome	0135144	.0023849	-5.67	0.000	0183047	0087241
age	.0009787	.0007461	1.31	0.196	0005199	.0024772
_cons	.1209958	.0184235	6.57	0.000	.0839912	.1580005
sigma_u	.00383103					
sigma_e	.0017871					
rho	.82128567	(fraction	of varia	nce due t	o u_i)	

Would time effects make sense?

- Might control for changes over time
 - Air bags
 - Other safety features
 - Changes in highway system
 - Changes in traffic congestion
- This would be differences-in-differences estimator that ignores variation that is
 - Purely across states
 - Purely over time

Differences-in-differences results (1)

. xtreg fatalityrate sb_usage speed65 speed70 drinkage21 ba08 lnincome age i.year , fe robus
> t

Fixed-effects (within) regression Group variable: fips	Number of obs Number of groups	= =	556 51
R-sq:	Obs per group:		
within = 0.7506	min	=	8
between = 0.1139	avg	=	10.9
overall = 0.0338	max	=	15
	F(21,50)	=	52.30
corr(u_i, Xb) = -0.5086	Prob > F	=	0.0000

(Std. Err. adjusted for 51 clusters in fips)

		Robust				
fatalityrate	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
sb_usage	0037186	.0014515	-2.56	0.013	0066339	0008032
speed65	0007833	.0005801	-1.35	0.183	0019484	.0003818
speed70	.0008042	.0004572	1.76	0.085	0001142	.0017225
drinkage21	0011337	.0006221	-1.82	0.074	0023831	.0001158
ba08	0008225	.0004433	-1.86	0.069	0017128	.0000678
lnincome	.0062643	.0066992	0.94	0.354	0071913	.01972
age	.001318	.0006937	1.90	0.063	0000753	.0027114

Differences-in-differences results (2)

year						
1984	0004319	.001378	-0.31	0.755	0031998	.002336
1985	0010707	.0017641	-0.61	0.547	004614	.0024726
1986	0005777	.0020078	-0.29	0.775	0046106	.0034551
1987	0008722	.0024939	-0.35	0.728	0058813	.0041368
1988	001885	.002877	-0.66	0.515	0076636	.0038936
1989	0041766	.0032564	-1.28	0.206	0107172	.0023641
1990	005266	.0035402	-1.49	0.143	0123767	.0018448
1991	0066622	.0037593	-1.77	0.082	0142131	.0008886
1992	008518	.0039855	-2.14	0.037	0165232	0005128
1993	0089399	.004199	-2.13	0.038	0173738	000506
1994	0096297	.0045934	-2.10	0.041	0188559	0004035
1995	0101123	.0048961	-2.07	0.044	0199464	0002782
1996	0110766	.0052089	-2.13	0.038	0215389	0006142
1997	0116075	.0055341	-2.10	0.041	0227231	0004919
_cons	0779904	.0663611	-1.18	0.245	2112805	.0552998
sigma u	.00575371					
sigma e	.00161752					
rho	.92675648	(fraction	of varia	nce due t	oui)	
					- /	

Random effects results

. xtreg fatalityrate sb_usage speed65 speed70 drinkage21 ba08 lnincome age

Random-effects GLS regression					Number of obs = 55			
Group variable	e: fips	Number of groups = 51						
R-sq:				Obs per	group:			
within :	= 0.6834				min =	8		
between :	= 0.3426				avg =	10.9		
overall :	= 0.4805				max =	15		
				Wald ch	i2(7) =	1086.83		
corr(u_i, X)	= 0 (assume	d)		Prob >	chi2 =	0.0000		
fatalityrate	Coef.	Std. Err.	Z	P> z	[95% Conf	. Interval]		
					-			
sb_usage	004504	.0011238	-4.01	0.000	0067066	0023014		
speed65	0003406	.0003276	-1.04	0.298	0009827	.0003015		
speed70	.0013351	.0003287	4.06	0.000	.0006909	.0019793		
drinkage21	.000767	.0005097	1.50	0.132	000232	.001766		
ba08	0013643	.000367	-3.72	0.000	0020836	000645		
lnincome	0126154	.0011453	-11.01	0.000	0148602	0103707		
age	.0002318	.0002394	0.97	0.333	0002373	.000701		
_cons	.1379473	.008919	15.47	0.000	.1204664	.1554282		
sigma_u	.00301581							
sigma_e	.0017871							
rho	.74011226	(fraction	of varia	nce due t	oui)			

Review and summary

- **Random-effects estimator** saves degrees of freedom and allows estimation of effects of pure cross-section regressors if it is valid
- It is **inconsistent** if unit effects are correlated with regressors
- RE model is estimated by **feasible GLS** using a "quasi-demeaning" process based on correlations of OLS residuals
- Hausman test can be used to examine whether RE estimator is consistent

Know your professor?

Which one of the following statements is true?

- a. I played in a rock band in high school.
- b. I have webbed toes.
- c. My wife was 14 when we started dating.
- d. I have performed in both New York's Macy's Thanksgiving Parade and Pasadena's Tournament of Roses Parade.
- e. My first car had 3 cylinders.
- f. All of the above are true.

What's next?

- We have now completed our brief examination of panel data models
- Next topic (April 13 and 16) is one of the very most important of the semester: **instrumental-variables** (IV) models for dealing with **endogenous regressors**
- We'll derive an estimator using the method of moments
- Standard IV method is **two-stage least squares**