## Economics 312 <br> Daily Problem \#36

## Spring 2020 <br> April 20

Suppose that $y_{t, R}$ is the "yield rate" at Reed College in year $t$, the share of admitted students who choose to attend, and that $y_{t, L C}$ is the yield rate at Lewis \& Clark College. We hypothesize the following model for yield at each school:

$$
y_{t, i}=\beta_{0, i}+\beta_{1, i} p_{t, i}+\beta_{2, i} x_{t, i}+u_{t, i}, i=R, L C,
$$

where $p_{t, i}$ is inflation-adjusted tuition at college $i$ and $x_{t, i}$ is a measure of perceived college quality (perhaps its US News \& World Report rating from the previous year).

We assume that $p$ and $x$ are exogenous to the yield rate and ignore any possible correlation over time in $u_{t, i}$. We are interested in two hypotheses:
i. $\quad H_{0}: \beta_{1, R}=\beta_{1, L C}$ because we want to know if the tuition sensitivity of enrollment varies between the colleges, and
ii. $\quad H_{0}: \beta_{2, R}=\beta_{2, L C}$ because we think that Reed applicants might be less sensitive to USNWR rankings than those applying to Lewis \& Clark due to Reed's famous non-participation in the USNWR survey.

In order to test these hypotheses, we must estimate the Reed and Lewis \& Clark equations jointly using the method of "seemingly unrelated regressions" or SUR.

1. Let $\mathbf{y}_{R}$ be the $T \times 1$ vector of observations $y_{t, R}$ for $t=1,2, \ldots, T$ and $\mathbf{y}_{L C}$ be the corresponding vector for Lewis \& Clark. Let $\mathbf{u}_{i}$ be the $T \times 1$ vector of the error term for school $i$ and $\mathbf{X}_{i}$ be the $T \times 3$ matrix with the first column being ones, the second column being the vector of $p_{t, i}$ values, and the third column being the vector of $x_{t, i}$ values for the school. Show that we can write a "stacked" regression for both schools as $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u}$, where

$$
\mathbf{y}=\left[\begin{array}{c}
\mathbf{y}_{R} \\
\mathbf{y}_{L C}
\end{array}\right], \mathbf{X}=\left[\begin{array}{cc}
\mathbf{X}_{R} & \mathbf{0} \\
\mathbf{0} & \mathbf{X}_{L C}
\end{array}\right], \boldsymbol{\beta}=\left[\begin{array}{c}
\boldsymbol{\beta}_{R} \\
\boldsymbol{\beta}_{L C}
\end{array}\right], \mathbf{u}=\left[\begin{array}{c}
\mathbf{u}_{R} \\
\mathbf{u}_{L C}
\end{array}\right] .
$$

2. Why might we worry, even if $\sigma_{R, R}=\operatorname{var}\left(u_{t, R}\right)$ and $\sigma_{L C, L C}=\operatorname{var}\left(u_{t, L C}\right)$ are constant over time, that $\sigma_{R, R} \neq \sigma_{L C, L C}$ ? How would that affect the OLS estimator of the stacked regression?
3. Why might we worry that $\operatorname{cov}\left(u_{t, R}, u_{t, L C}\right) \equiv \sigma_{R, L C} \neq 0$ ? How would that affect the OLS estimator of the stacked regression?
