Economics 312 Daily Problem \#35

Spring 2020
 April 17

In our class discussion we will work with a series of examples of simple supply-demand models to illustrate the phenomenon of identification in a simultaneous-equation model. Here, you conduct some exploration of "Model IV" from that analysis.

Suppose that the demand curve for an agricultural product is given by

$$
Q=\alpha_{0}+\alpha_{P} P+\alpha_{M} M+u,
$$

where Q is quantity exchanged, P is price, M is consumer income (assumed to be exogenous), and u is the random disturbance in the demand equation. The supply curve is given by

$$
Q=\beta_{0}+\beta_{P} P+\beta_{R} R+v,
$$

where R is rainfall (exogenous) and v is the random supply disturbance.

1. Solve these two equations for the reduced-form equations for Q and P.
2. Denoting the reduced-form system by

$$
\begin{aligned}
& P=\pi_{P 0}+\pi_{P M} M+\pi_{P R} R+\varepsilon_{P} \\
& Q=\pi_{Q 0}+\pi_{Q M} M+\pi_{Q R} R+\varepsilon_{Q},
\end{aligned}
$$

where the π values are coefficients and the ε variables are composite error terms, show how each of the six α and β structural coefficients can be calculated uniquely as a function of the six π coefficients of the reduced form. (Find the formulas, though you may ignore α_{0} and β_{0} if you want.)
3. What happens to our ability to identify the α and/or β coefficients if $\alpha_{M}=0$? If $\beta_{R}=0$?

