Economics 312 Daily Problem #26

Spring 2020 Revised Date: April Fool's Day

Note: The data are weekly data on advertising and sales for a Midwest department store. The advertising variable in this dataset was also used as x in your first Monte Carlo exercise.

The following table gives an OLS regression of the model $sales_t = \alpha + \beta_0 a dv_t + \beta_1 a dv_{t-1} + \gamma sales_{t-1} + u_t$.

. reg sales l.sales l(0/1)adv								
Source	SS	df		MS		Number of obs	=	156 48 99
Model	209.251815	3	69.'	750605		Prob > F	=	0.0000
Residual	216.413032	152	1.42	376995		R-squared	=	0.4916
Total	425.664847	155	2.74	622482		Root MSE	=	1.1932
sales	Coef.	Std. 1	Err.	t	₽> t	[95% Conf.	Int	cerval]
sales L1. 	.1430939	.0733	045	1.95	0.053	0017333	.2	2879211
adv 	2.818347	. 8228	303	3.42	0.001	1,192588	4	444107
L1.	3.540486	.9384	818	3.77	0.000	1.686333	5	394638
_cons	17.52318	1.731	551	10.12	0.000	14.10217	20).94419

1. Give an assessment of this regression. Do the signs and magnitudes of the coefficients seem reasonable? What additional information would you like to have to determine whether it accurately captures the dynamic relationship between advertising and sales?

2. Use the estimated coefficients to get a point estimate of the "impact effect" $\frac{\partial sales_t}{\partial adv_t}$.

3. Calculate the first 2 "*dynamic marginal effects*" $\frac{\partial sales_t}{\partial adv_{t-s}}$ and the corresponding "cumulative effects"

 $\sum_{\tau=0}^{s} \frac{\partial sales_{t}}{\partial adv_{t-\tau}}$. Is the pattern what you would expect?

4. Calculate the "long-run effect" $\sum_{\tau=0}^{\infty} \frac{\partial sales_t}{\partial adv_{t-\tau}} = \lim_{s \to \infty} \sum_{\tau=0}^{s} \frac{\partial sales_t}{\partial adv_{t-\tau}} .$