Note: The data are weekly data on advertising and sales for a Midwest department store. The advertising variable in this dataset was also used as x in your first Monte Carlo exercise.

The following table gives an OLS regression of the model sales $_{t}=\alpha+\beta_{0} a d v_{t}+\beta_{1} a d v_{t-1}+\gamma$ sales $_{t-1}+u_{t}$.

Source	SS	df MS			Number of obs $=156$	
					F (3, 152)	$=48.99$
Model	209.251815	$3 \quad 69.750605$			Prob $>$ F	$=0.0000$
Residual	216.413032	1521.42376995			R -squared	$=0.4916$
					Adj R-squared	$=0.4816$
Total	425.664847	$155 \quad 2.74622482$			Root MSE	$=1.1932$
sales	Coef	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
sales \|						
L1.	. 1430939	. 0733045	1.95	0.053	-. 0017333	. 2879211
adv 1						
--	2.818347	. 8228803	3.42	0.001	1.192588	4.444107
L1.	3.540486	. 9384818	3.77	0.000	1.686333	5.394638
_cons	17.52318	1.731551				
	17.52318	1.731551	10.12	0.000	14.10217	20.94419

1. Give an assessment of this regression. Do the signs and magnitudes of the coefficients seem reasonable? What additional information would you like to have to determine whether it accurately captures the dynamic relationship between advertising and sales?
2. Use the estimated coefficients to get a point estimate of the "impact effect" $\frac{\partial \text { sales }_{t}}{\partial a d v_{t}}$.
3. Calculate the first 2 "dynamic marginal effects" $\frac{\partial \text { sales }_{t}}{\partial a d v_{t-s}}$ and the corresponding "cumulative effects" $\sum_{\tau=0}^{s} \frac{\partial \text { sales }_{t}}{\partial a d v_{t-\tau}}$. Is the pattern what you would expect?
4. Calculate the "long-run effect" $\sum_{\tau=0}^{\infty} \frac{\partial \text { sales }_{t}}{\partial a d v_{t-\tau}}=\lim _{s \rightarrow \infty} \sum_{\tau=0}^{s} \frac{\partial \text { sales }_{t}}{\partial a d v_{t-\tau}}$.
