Economics 312 Daily Problem #25

A dataset from the Hill, Griffiths, and Lim text, which provided the *x* variable for your Project #2 Monte Carlo study, contains weekly observations on two variables, sales and advertising by a large department store. The Daily Problems this week will explore the dynamic relationship between these variables.

The simplest regression, which we would not really expect to be adequate, would regress this week's sales on this week's advertising expenditures.

. reg sales adv

Source	SS +	df	MS	Number of F(1, 155)		
Model Residual	161.334577	1 155	161.334577 1.71046703	Prob > F R-squared	= l =	0.0000
Total	•	156	2.7336985	Adj R-squ Root MSE	ared =	111111
sales	 Coef. +	Std. Err.				Interval]
adv _cons	•	.6160225 .6440184	9.71	0.000 4.	765896 .65301	7.199662 23.19738

- 1. Give a brief assessment of this regression. Are the results consistent with your expectations?
- 2. Would you expect the error in this regression to be autocorrelated? Why?
- . predict uhat , resid
- . reg uhat adv 1.uhat

Source	ss	df	MS		er of obs		156
Model	5.95769769 257.129967	2	2.97884885 1.68058802	Prob	153) > F uared	=	1.77 0.1734 0.0226
Total	263.087665		1.69733977	Adj 1 Root	R-squared MSE	=	0.0099 1.2964
uhat	Coef.				-		-
adv	.0469047						
uhat L1.	.1498829	.0796299	1.88	0.062	007433	31	.307199
_cons	0391273	.6387111	-0.06	0.951	-1.30095	9	1.222704

3. The equation above regresses the residual on the regressor (adv) and the lagged residual. Explain the logic of the regression and interpret the results using the χ^2 (Lagrange multiplier) version of the Breusch-Godfrey test at the 5% and 10% level of significance. Are you surprised at the results?