Economics 312 Daily Problem #14

In your earlier project, you used Monte Carlo simulations to examine the properties of the OLS estimator when the error term u was constructed to be independent of the regressor. This simulation uses the same data set of 157 observations.

The properties of *x* are:

. summarize x					
Variable	Obs	Mean	Std. Dev.	Min	Max
x	157	1.031624	.1699803	. 573	1.384

In place of the olstest.do file that we used in the first part of that project, suppose that we use xucorr.do below:

```
program xucorr
```

```
g u = rnormal(0,0.3)+0.2*(x-1.031624)
g y = 10+3*x+u
reg y x
drop u
drop y
```

end

1. What is the nature of the error term *u* that is created and how does it differ from the "classical" error term of the MLR assumptions that we used in olstest.do?

2. What results would you expect from regressing *y* on *x*? Why?

Below are the summary statistics and histogram for 10,000 replications of $\hat{\beta}_1$ from this model.

. summarize b					
Variable	Obs	Mean	Std. Dev	. Min	Max
b	10,000	3.198666	.1406039	2.716112	3.735804

3. Characterize these results. Are they what you expect? Is $\hat{\beta}$ unbiased? If not, would you expect it to be consistent, so that the bias goes away as *n* gets large? Explain.