Economics 312 Daily Problem #13

. reg lwage educ

This problem uses a variant on the wage/education relationship using the log of wage, so that a change of 0.01 in the dependent variable is approximately an increase of 1% in the wage. Here is the simple regression of log(wage) on education:

Source	SS	df MS			Number of obs	= 1000	
Model Residual	60.015841 276.76489	1 60 998 .2	0.015841 27731953		Prob > F R-squared	$\begin{array}{rcl} - & 210.41 \\ = & 0.0000 \\ = & 0.1782 \\ - & 0.1774 \end{array}$	
Total	336.780731	999 .33	37117849		Root MSE	= .52661	
lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
educ _cons	.0904082 1.609444	.0061456 .0864229	14.71 18.62	0.000	.0783484 1.439853	.1024681 1.779036	

Adding three regional dummy variables to the regression (the East region is omitted) yields

Source	I	SS	df		MS		Number of obs	=	1000
Model Residual	1	63.7111173 273.069614	4 995	15.9 .274	0277793 1441823		F(4, 995) Prob > F R-squared	=	0.0000
Total	1	336.780731	999	. 337	/117849		Adj R-squared Root MSE	=	0.1859 .52387
lwage	1	Coef.	Std.	Err.	t	₽> t	[95% Conf.	In	terval]
educ midwest south west _cons	 	.0904304 1313871 0523116 .0332736 1.648171	.000 .048 .048 .048 .048	6124 7029 6397 7333 2581	14.77 -2.70 -1.13 0.68 17.80	0.000 0.007 0.260 0.495 0.000	.0784129 2269593 1433588 0623583 1.466494	- 1	1024479 .035815 0387357 1289056 .829847

. reg lwage educ midwest south west

1. Why can we not add a dummy for the East region? What would happen if we did?

2. Interpret the coefficients of the three dummy variables and their individual *t* statistics. (What economic hypothesis does each of these *t* tests test?)

3. Specify the null and alternative hypotheses for a test that, controlling for education, wages in the West are the same as in the South. Give the formula for the test statistic that you could use to test this. Why can you not calculate the test statistic from the information in the table?

4. Use the SSR form of the *F* test in Wooldridge's equation [4.37] to test the null hypothesis that region does not matter, *i.e.*, H_0 : $\beta_2 = 0$, $\beta_3 = 0$, and $\beta_4 = 0$ against H_1 : $\beta_2 \neq 0$ or $\beta_3 \neq 0$ or $\beta_4 \neq 0$ in the regression $\ln(wage) = \beta_0 + \beta_1 educ + \beta_2 midwest + \beta_3 south + \beta_4 west + u$.