Economics 312 Daily Problem #7

The following OLS regression was run using panel data for 50 states plus the District of Columbia for years 1983–1997. The dependent variable *fatalityrate* is the number of traffic fatalities per million miles traveled. The regressor *sb_usage* is the estimated rate of seatbelt usage as a fraction (0.5 means 50% usage). The seatbelt variable was not observed for all states and years, so the panel is "unbalanced."

Source	ss	df	MS	Nun F(1	mber of ob L, 554)	s = =	556 107.24
Model	.00227688	38 1	.00227688	38 Pro	b > F	=	0.0000
Residual	+		.00002123	- Ad	squarec j R-square	= d	0.1622
Total	.01403940	06 555	.00002529	96 Roc	ot MSE	=	.00461
fatalityrate	Coef	. Std. Err.	t	P> t	[95%	Conf.	Interval]
sb_usage _cons	011901 .026062	5 .0011493 5 .0006384	-10.36 40.82	0.000 0.000	0141 .0248	589 086	009644 .0273167

. regress fatalityrate sb_usage

1. Interpret the coefficient on seatbelt usage and (if it has an interpretation) the constant term in this regression. Do the results seem reasonable?

2. What would be the payoff in terms of fatalities of increasing the rate of seatbelt use by 5 percentage points in a state with 50 billion vehicle miles per year? Use the reported confidence interval to find a 95% confidence range for this effect.

3. Can you think of any problems that might arise from omitting the observations with unreported seatbelt usage?

The regression below uses the same dependent variable but the regressor is a dummy variable that is one for states/years where the legal drinking age is 21 and zero where the drinking age is lower.

. regress fatalityrate drinkage21

Source	1	SS	df	MS	Num	ber of obs	=	765
	+-				- F(1	, 763)	=	72.06
Model	1	.002510823	1	.002510823	3 Pro	b > F	=	0.0000
Residual	1	.026586021	763	.000034844	4 R-s	quared	=	0.0863
	+-				- Adj	R-squared	=	0.0851
Total	T	.029096845	764	.00003808	5 Roo	t MSE	=	.0059
fatalityrate	1	Coef.	Std. Err.	t	₽> t	[95% Co	onf.	Interval]
drinkage21 _cons	 	0056781 .0265144	.0006689 .0006292	-8.49 42.14	0.000	006993	12 92	004365 .0277497

4. Interpret the coefficient on the drinkage21 variable and (if possible) the constant term. Do the results seem reasonable?

5. If a state with 50 billion vehicle miles per year could lower its legal drinking age below 21, what would you predict about the effects on fatalities?