This problem uses a dataset designed to examine the effect of seat-belt usage on traffic fatalities. It contains annual state-level data (for the 50 states and the District of Columbia) for 1983–97. Some states are missing data for some years, so there is a total of 556 available observations.

The variables in these regressions are defined below:

Variable	Definition			
fatalityrate	Number of fatalities per billion of traffic miles			
sb_usage	Seat belt usage rate			
speed65	Binary variable for 65 mile per hour speed limit			
speed70	Binary variable for 70 or higher mile per hour speed limit			
ba08	Binary variable for blood alcohol limit ≤ .08%			
drinkage21	Binary variable for age 21 drinking age			
income	Per-capita income (in thousands of dollars)			
age	Mean age			
state	State			
year	Year			
fips	State numeric ID Code			

A few of explanatory notes about the dummy variables, for those who weren't alive during the sample:

- The omitted category for speed limit is 55, so both 65 and 70 are high speed limits relative to the omitted category.
- The omitted category for drinking age is < 21, so the state/years with *drinkage21* = 1 have a higher drinking age than the state where it is 0.
- The legal blood alcohol limit in many states (including Oregon) is 0.08, but in some states it is lower, so states with ba08 = 1 have a more strict requirement.

We begin by defining the dimensions of the panel data set. We must use the *fips* variable instead of *state* because you are not allowed to use a non-numeric variable as the cross-section index.

Our first regression is simple OLS, which yields:

. reg fatalityrate sb_usage speed65 speed70 drinkage21 ba08 income age

Source	ss	df	MS	Number of obs		556
	+			F(7, 548)	=	81.56
Model	7163.59121	7	1023.37017	Prob > F	=	0.0000
Residual	6875.81485	548	12.5471074	R-squared	=	0.5102
	+			Adj R-squared	. =	0.5040
Total	14039.4061	555	25.2962271	Root MSE	=	3.5422
fatalityrate	Coef.	Std. Err.	 t F	?> t [95% C	onf	Interval]
				. 0 1 1 1		
sb usage	2.044971	1.230365	1.66 0	.09737183	78	4.46178
speed65	055393	.4221364	-0.13 0	.89688459	65	.7738104
speed70	2.220152	.5322322		0.000 1.1746		3.265617
drinkage21	9306173	.9060268		0.305 -2.7103		.8490933
ba08	-1.984619	.4636014		0.000 -2.8952		-1.073966
income	-821829.8	46995.31		0.000 -914142		-729516.8
age	0550734	.1134823		0.62827798		.1678402
_	37.71707	3.822357		30.20		45.22533
_cons	1 37.71707	3.022337	J.07 0	30.20		45.22555

1. Describe the results of this regression. Are they what you would expect? Explain.

Now we estimate the same equation with state fixed effects:

sigma_u | 3.6363728 sigma_e | 1.8364121

```
. xtreg fatalityrate sb_usage speed65 speed70 drinkage21 ba08 income age , fe
                                                                                                                               = 556
Fixed-effects (within) regression
                                                                                              Number of obs
Group variable: fips
                                                                                              Number of groups =
                                                                                                                                                  51
R-sq:
                                                                                               Obs per group:
                                                                                                                                               8
         within = 0.6693
                                                                                                                          min =
                                                                                                                                            10.9
                                                                                                                          avg =
         between = 0.2355
                                                                                                                         max =
         overall = 0.4075
                                                                                                                                                15
                                                                                              F(7,498)
                                                                                                                                           143.96
corr(u_i, Xb) = 0.0070
                                                                                              Prob > F
                                                                                                                                              0.0000
 ______
fatalityrate | Coef. Std. Err. t p>|t| [95% Conf. Interval]
______

        sb_usage
        -7.427945
        1.143347
        -6.50
        0.000
        -9.674322
        -5.181567

        speed65
        -.729366
        .3393736
        -2.15
        0.032
        -1.396147
        -.0625854

        speed70
        .9725035
        .334633
        2.91
        0.004
        .3150369
        1.62997

        rinkage21
        .442645
        .5298421
        0.84
        0.404
        -.5983564
        1.483646

        ba08
        -1.41711
        .3833831
        -3.70
        0.000
        -2.170358
        -.6638626

        income
        -.5013766
        .0650037
        -7.71
        0.000
        -.629092
        -.3736613

        age
        .2601212
        .3673732
        0.71
        0.479
        -.4616711
        .9819136

        _cons
        24.5302
        11.98775
        2.05
        0.041
        .9773989
        48.083

   drinkage21
            _cons |
```

rho | .79678915 (fraction of variance due to u_i)

F test that all u_i=0: F(50, 498) = 30.82 Prob > F = 0.0000

2. How do the results of this regression differ from OLS? Why do you think this happens? Which set of results do you think are more reliable and why?