Economics 311 Daily Problem #3

Fall 2017 September 8

Studenmund's equation (2.4) says that

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{N} \left[\left(X_i - \overline{X} \right) \left(Y_i - \overline{Y} \right) \right]}{\sum_{i=1}^{N} \left(X_i - \overline{X} \right)^2}$$

- a. If X_i is above average, what will be the sign of $(X_i \overline{X})$?
- b. If Y_i is above average, what will be the sign of $(Y_i \overline{Y})$?
- c. If both are above average for observation *i*, what is the sign of the product $(X_i \overline{X})(Y_i \overline{Y})$?
- d. What happens to your answers to a, b, and c if X_i and Y_i are both below average for observation i?
- e. What is the sign of $(X_i \overline{X})(Y_i \overline{Y})$ if one variable is above average and the other is below average for observation i?
- f. Suppose that the relationship between X and Y is positive, so Y tends to be above average for the same observations that X is above average and Y tends to be below average for the same observations that X is below average. Would most of the summands in the numerator of the $\hat{\beta}_1$ expression to be positive or negative? (Are there likely to be more observations that follow the pattern of C and C or more that follow the pattern of C?) What sign would you expect for the numerator, positive or negative?
- g. Given that the denominator of the $\hat{\beta}_1$ expression cannot be negative, what sign would you expect for $\hat{\beta}_1$ when the relationship is positive?