Econ 201: Introduction to Economic Analysis

October 12 Lecture: Oligopoly and Models of Strategic Interaction

Jeffrey Parker
Reed College
Daily dose of The Far Side

www.thefarside.com

“You’re kidding! I was struck twice by lightning too!”
Preview of this class session

• **Oligopoly**: few firms with strategic interaction

• **Game theory** and Nash equilibrium

• **Collusion** and cartels

• Some important models of strategic interaction
 - Cournot model
 - Stackelberg model
 - Bertrand model
Nature of oligopoly

• Few firms; some large enough to affect market price
• Barriers to entry allow some economic profits in long run
• Product can be homogeneous or differentiated
• Key feature: **strategic interaction**
 • Doesn’t happen in perfect competition because no firm affects others
 • Doesn’t happen in pure monopoly because no other firms
• Higher-education market: Harvard, Princeton, Stanford, Yale?
 • Is Reed oligopolistic? Are Oregon, Oregon State, and Portland State?
• Duopoly: two firms for simplicity
• **Game theory**: Analysis of strategic interaction
Nash equilibrium in duopoly

- Each agent forms strategy to respond to other’s decision
- **Reaction function:**
 \[X_1 = f_1(X_2), \quad X_2 = f_2(X_1) \]
- Can graph these reactions functions in \((X_1, X_2)\)
- **Nash equilibrium:** Values of \(X_1\) and \(X_2\) where each is making optimal decision given the other’s decision:
 \[X_1^* = f_1(X_2^*), \quad X_2^* = f_2(X_1^*) \]
- On graph, this is intersection of two reaction functions
- Nash equilibrium is most basic model of game theory
- May not exist or be unique; may not be optimal for players
Collusion and cartels

• Optimal collective behavior for oligopolists: act together and joint monopoly to maximize joint profits
 • Set industry output where industry MC = MR

• How to divide up the shares of output?

• Cartels are naturally unstable:
 • Each firm’s MR acting alone exceeds its MC
 • Each member of cartel increases profit by cheating and producing more

• Cartels are illegal in United States and many other countries
 • This makes it hard to enforce agreements on production shares

• What helped ADM to enforce quotas in lysine case?

• Saudi Arabia as enforcer in OPEC?
Cournot duopoly: Quantity interaction

- Two firms (A and B) produce homogeneous product
- May differ in scale and in cost curves, but neither is too small for the other to ignore
- Decision-making process for Firm A:
 - Take quantity produced by B (Q_B) as given
 - Find Q_A that maximizes profit when A’s demand is the market demand minus Q_B
- Firm B follows similar decision process based on Q_A
- Nash equilibrium is where both are maximizing profit given the other’s output decision
Cournot duopoly in graphs

- A’s Demand and MR are shown for $Q_B = 0, 100, 300$
- If $Q_B = 0$, then $MR_A = MC$ at $Q_A = 150$
- If $Q_B = 100$, then $MR_A = MC$ at $Q_A = 100$
- If $Q_B = 300$, then A is knocked out of market and $Q_A = 0$; no units can be sold $\leq MC$
- Three points on A’s reaction function: $(Q_A, Q_B) = (150, 0), (100, 100), (0, 300)$
Cournot reaction functions

- Circled points on A’s reaction function are from previous slide
- B’s reaction function is mirror image of A’s
- Intersection is at (100, 100), which is Nash equilibrium (total $Q = 200$)
- Competitive output = 300
- Monopoly output would be 150: Red line is where $Q_A + Q_B = 150$
- A would like to be at top, B at bottom. Can they agree?
 - Probably not!
Stackelberg oligopoly: Industry leader

- One **dominant firm** in industry
- Other firms are too small to affect dominant firm (competitive fringe)
- Small firms have reaction functions to dominant firm
 - Dominant firm maximizes its profit knowing how the small firms’ will respond based on their reaction functions
 - Announces its decision and waits for small firms to react
- Large firm gets “**first-mover advantage**” and can maximize profit at the expense of consumers *and* small rivals
Bertrand price-setting model

- Firms set *price* (rather than quantity) taking other’s *price* as given
- Seems like ~Cournot, but it isn’t
- Identical, constant MC and homogeneous good:
 - Optimal strategy is to charge just less than rival if > MC
 - Price war drives price down to MC
 - Fully efficient!
- With differentiated good, interaction is complex and not fully efficient

\[
P_A = f_A(P_B) \\
P_B = f_B(P_A)
\]

\[
MC_A = MC_B
\]
Review

- Oligopoly is few firms interacting strategically
- Game theory and Nash equilibrium are used to describe interaction
- Each firm optimizes its decision given its rival’s decision
- Collusion would maximize joint profits, but each has incentive to cheat
- Cournot, Stackelberg, Bertrand models are three ways of interacting
Daily diversion

Following up on my wonderful bedside clock that makes words when the numbers are read upside down…

In 2014, Reed held a “strategic-planning retreat” for faculty and trustees at Sunriver Resort in Central Oregon. Many of us were dismayed that it was scheduled right in the middle of the 2014 World Cup.

I was assigned to cabin #706. Of course, upside down on my clock, 706 reads gOL or, to quote everyone’s favorite Latin American announcer, gOAAAAAAAAAAAAAAAAAAAAAAA! The president’s assistant rolled her eyes when I pointed out the appropriateness of this assignment. Some people just don’t get it!
What comes next?

• Wednesday’s class continues with game theory, discussing some famous games such as prisoners’ dilemma and battle of the sexes
• Following that we spend three class sessions on markets for labor, capital, and other inputs
• Problem Set #5 is due on Wednesday