Retinoic Acid (RA) and the Formation of Neurons

- RA is necessary for proper embryonic patterning & cell differentiation
- RA promotes eye and brain development in zebrafish
- Together with its receptor, RA acts as a transcription factor

Computational Approach and Results

1. Wrote a motif-finding Python program to find all RARE-containing zebrafish genes

 ![Motif-finding diagram]

 RARE motif = DR1 - DR5 motifs
 Input = 65,171 zebrafish genes’ 5kb upstream region
 Output: RARE-containing genes and their tandem repeat motif sequences
 Parameters: Motif must match logo, be spaced 1-5 bp apart to be a DR

2. Refined list by cross-referencing gene expression data from ZFIN

 ![Gene expression data]

 Examples of Candidate Genes
 - fgf24: fibroblast growth factor
 - cyp26a1: RA metabolizing enzyme
 - rarab: retinoic acid receptor
 - shha: sonic hedgehog signaling molecule a
 - aldha1a: aldehyde dehydrogenase
 - rdha8: retinol dehydrogenase

3. Generated DR5 RARE motif frequency plot using the program-identified zebrafish RAREs

 ![Motif frequency plot]

Future Work: Experimental Evaluation of Candidate Genes

Likely candidates can be assayed for expression after treatment with translation blocker and RA agonist

![Experimental setup diagram]

Extant RNA-seq data using the same drug treatments can be analyzed further with reference to RARE-containing genes

Conclusion

112 zebrafish RARE genes were identified that are observed in the early stages of zebrafish eye development

Acknowledgments

Anna Ritz, Kara Cerveny, and everyone in the Cerveny & Comp Bio labs

Literature Cited