
Introduction
Genomic regulation is key to cellular differentiation, tissue morphogenesis,
and development. Increasing evidence indicates that evolutionary diversity
of phenotypes—from cellular to organismic—may also be, in large part, the
result of variation in the regulation of genomic expression.

In this chapter we explore the complexity of gene regulation from the
perspective of single genes and whole genomes. The first part describes the
major factors affecting gene expression levels, from rates of gene transcrip-
tion—as mediated by promoter–enhancer interactions and chromatin mod-
ifications—to rates of mRNA degradation. This description underscores the
multiple levels at which genomic expression can be regulated as well as the
complexity and variety of mechanisms used. We then briefly describe the
major experimental and computational biology techniques for analyzing
gene expression variation and its underlying causes. The final section
reviews our understanding of the role of regulatory variation in evolution,
including the molecular evolution and population genetics of noncoding
DNA, as well as the inheritance and phenotypic evolution of levels of
mRNA abundance.

The Complex Regulation of Genomic Expression
The regulation of gene expression is a complex and dynamic process. It is
not a simple matter to turn a gene on and off, let alone precisely regulate its
level of expression. Regulation can be accomplished through various mech-
anisms at nearly every step of the process of gene expression. Furthermore,
each mechanism may require a variety of elements, including DNA
sequences, RNA molecules, and proteins, acting in combination to deter-
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transcription factors). However, it should be stressed that this classification
of gene loci and their mutations breaks down for most genes. This is because
many proteins (structural) act in trans to alter the expression level of other
genes (regulatory), such that a single mutation can have both structural and
regulatory consequences. Work by Yvert and colleagues (2003) clearly exem-
plifies this point. These authors mapped a large number of trans-acting loci
affecting gene expression differences between two strains of yeast, and
found that genes with a large variety of molecular functions, such as
enzymes, signal transducers, and cytoskeleton-binding proteins, could influ-
ence gene expression levels. Accordingly, amongst trans-acting loci there is
no specific enrichment for transcription factors. 

In the following section, we outline the overall process of gene expres-
sion by indicating the mechanisms known to regulate gene product level,
location, or timing at various stages of transcription, translation, and post-
translation. Transcriptional regulation of gene expression can occur at the
level of genomic DNA prior to transcription, or at the step of transcription,
when the RNA is being produced. Post-transcription regulation occurs
through several mechanisms affecting the processing, stability, and/or local-
ization of the mRNA. The amount of functional gene product can also be
regulated post-translationally. For each stage in the process of gene expres-
sion, we provide examples of a few well-studied mechanisms of regulation,
and attempt to identify examples of both cis-acting and trans-acting elements
involved in each of the regulatory mechanisms. Figure 5.1 gives examples
of the different stages along the path to functional protein during which
genomic expression may be regulated. In most instances, the evolutionary
acquisition and consequences of these mechanisms have yet to be addressed.
Most research regarding the molecular evolution of gene or genomic expres-
sion has focused on transcription factors (TF), promoter sequences, and TF-
binding sites within promoters. Similarly, most research regarding the phe-
notypic evolution of genomic expression has focused on the evolution of the
mRNA abundance phenotype, most often without an explicit connection to
evolutionary variation in specific underlying mechanisms associated with
variation in this phenotype.

Classical Transcriptional Regulation in Cis and Trans
Promoters,enhancers, repressors, transcription factors,
and regulatory proteins
Promoters are among the most thoroughly studied and best understood reg-
ulators of gene expression (Ptashne and Gann 2002; Thomas and Chiang
2006). In eukaryotes, the promoter is defined as the DNA region within a
few hundred base pairs upstream of the transcription start site, the section
of DNA where the basic machinery of gene expression is assembled. The
promoter region encodes various sequence motifs where transcription fac-
tors bind along with RNA polymerase II to initiate transcription (Smale and
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mine the final amount, timing, and location of functional gene product. The
complexity of regulation is even more evident when it is considered in the
context of evolution and from the standpoint of integrated gene expres-
sion across the genome. The dynamic process of genomic expression is not
strictly fixed but can be context dependent, responding to cellular (genomic)
or environmental influences. Through successive generations, the interplay
of these mechanisms evolves, thus generating a selectively advantageous
amount and/or location of functional gene product.

Most of the cellular elements regulating gene expression can be divided
into two basic categories: cis- and trans-acting factors, from the Latin mean-
ing “on the same side” and “on the opposite side,” respectively. Both cis-
and trans-acting regulatory elements may contribute to the various mech-
anisms of gene expression regulation. Strictly, cis and trans effects do not
refer to the physical location of the regulatory element, but are rather oper-
ationally defined in terms of the way these regulatory elements segregate
genetically with respect to the gene that is the target of the regulatory activ-
ity. Promoters, enhancers, regulatory introns, and 3’ regulatory sequences
are examples of cis-regulatory elements. This is because these elements are
located within the gene locus itself or in close proximity to it, such that they
are generally inherited together as a unit (i.e., the probability of recombina-
tion between the regulatory elements and the gene’s structural sequences
is virtually zero).

Trans-acting factors include proteins and RNAs derived from distant sites
in the genome that act as regulatory elements. These can be either on differ-
ent chromosomes or on the same chromosome far away from the gene locus,
such that they can be independently inherited (i.e., the recombination fre-
quency is virtually 50%). Specific factors necessary for initiating or block-
ing transcription, or proteins that allow for appropriate gene-specific mRNA
trafficking and stability, are just a few of the myriad trans-acting factors that
contribute to gene expression. 

The definition of cis and trans with respect to segregation is important
because these two types of elements work in concert and often there is no
clear functional (or even positional) distinction between cis and trans. Trans-
acting factors bind to or interact with cis-regulatory sequences of the DNA
and RNA. It is therefore the interplay of cis- and trans-acting loci that deter-
mines the amount of functional gene product. Indeed, this level of complex-
ity and interaction provide the very substrate for the evolution of regula-
tion as various cis and trans factors are brought together through segregation
and recombination. When combined, elements that have evolved under dif-
fering selective pressures may produce novel phenotypes, thus offering
novel substrates for natural selection.

Early work attempted to categorize genetic mutations affecting a partic-
ular phenotype as either structural or regulatory (e.g., Wilson et al. 1977).
This separation was motivated by the intuition that some proteins have
clearly defined structural roles (e.g., collagen), while the function of other
proteins lies primarily in the regulation of other genes (e.g., muscle-specific
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Kadonaga 2003). The initiation and rate of transcription depend on the inter-
play of many DNA and protein elements. Ultimately, a gene’s transcription
level reflects the interactions between various activating and inhibitory com-
plexes assembled not only at the promoter region, but also at various
enhancer and silencer sites along the chromatin (Wray et al. 2003). 

The core promoter includes DNA elements that can extend about 35
nucleotides upstream and/or downstream of the transcription initiation site
(Smale and Kadonaga 2003). The core is obviously the archetype of cis-reg-
ulatory factors. At least six core promoter elements have been discerned so
far (Gershenzon et al. 2006): TATA box, Initiator (Inr), Downstream Promoter
Element (DPE), TFIIB Recognition Element (BRE), Downstream Core Ele-
ment (DCE), and Motif Ten Element (MTE). Although earlier studies sug-
gested that the structure of the core promoter might be highly conserved
throughout the eukaryotes, tremendous diversity is now evident. First, the
sequence and the position of DNA motifs are variable within and between
species (Smale and Kadonaga 2003; Bazykin and Kondrashov 2006; FitzGer-
ald et al. 2006). Second, not all core promoter elements are systematically
associated with all gene promoters; instead combinations of a subset of pro-
moter elements are more frequently observed. In Drosophila melanogaster,
TATA box, Inr, DPE, and MTE are found in, respectively, 16%, 66%, 22%,
and 10% of the genes (Gershenzon et al. 2006). In mammalian promoters,
the TATA box element is also present in a minority of genes, but shows sub-
stantial sequence conservation and is commonly associated with tissue-spe-
cific expression (Carninci et al. 2006). Surprisingly, the presence of the TATA
box is also associated with elevated rates of gene expression divergence
among yeast species (Tirosh et al. 2006). On the other hand, TATA-less pro-
moters, which are often enriched in CpG islands, seem to be particularly
rapidly evolving in mammals (Carninci et al. 2006).

The specific proteins that bind to the core promoters are perhaps the most
fundamental trans-acting factors regulating gene expression. They include
the general transcription factor TFIID, which recognizes the promoter and
coordinates the assembly of the remaining general transcription factors
(TFIIA, TFIIB, TFIIE, and TFIIH). TFIID is itself a large protein complex
formed by the TATA-box binding protein (TBP) as well as several transcrip-
tion-associated factors (TAFs). The latter include coactivators capable of
propagating signals from distant enhancer or repressor elements to the pro-
moter site. In a stereotyped sequence of protein binding, TBP, TFIID, TFIIA,
and TFIIB must bind to the promoter region first in order to recruit RNA
polymerase II, TFIIE, TFIIH, TFIIF, and other factors necessary to initiate
transcription (Tjian 1996; Smale and Kadonaga 2003). These are the trans-
acting partners to cis-occurring promoters and/or enhancer sequences.
These proteins are remarkably conserved across the eukaryotes.

Eukaryotic enhancer and repressor elements are additional sites that
influence gene expression and may occur several hundred to several thou-
sand base pairs from the promoter site. In many cases, the various enhancer
or repressor elements act independently of each other. Each such enhancer
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called epigenetic memory, which plays a major role in regulating cell fate
decisions. These stable, epigenetic changes persist through mitosis and in
some cases through meiosis. Consideration of epigenetic gene regulation
has led to models for the inheritance of acquired epigenetic variations—
models in which environmental stimuli induce heritable modifications that
might result in adaptive responses to the stimuli (Jablonka and Lamb 1989;
Jablonka and Lamb 2002; Gorelick 2005).

DNA methylation
DNA methylation is the most well-understood form of epigenetic gene reg-
ulation. First proposed in 1975 (Holliday and Pugh 1975), it has since been
intensively characterized in mammals and plants (Jaenisch and Bird 2003;
Scott and Spielman 2004). The establishment and maintenance of methyla-
tion is required for the normal development and cell differentiation of many
organisms. In mammals, DNA methylation occurs predominantly at
cytosines in CpG dinucleotides, and several enzymes (DNA methyltrans-
ferases) are responsible for de novo methylation and maintenance of methy-
lation marks during mitosis and meiosis. Little is known, however, about the
sequences and conditions that direct methylation activity. With respect to a
gene under control of DNA methylation, the CpG islands and surrounding
sequences that direct the specificity of methylation are cis-acting factors, while
the methylation enzymes are trans-acting factors. In general, increased methy-
lation is associated with down-regulation of gene expression (Wolffe and
Matzke 1999), and unmethylated CpG islands lead to increased transcrip-
tion, although exceptions to this have been described (e.g., Herman et al.
2003). In addition, DNA methylation states have been shown to be sensi-
tive to environmental factors (Jaenisch and Bird 2003) and also to have long
lasting effects on behavior (Weaver et al. 2004; Weaver et al. 2005; Feil 2006).
Finally, DNA methylation is found in most transposable elements in Ara-
bidopsis and primates (Lippman et al. 2004; Meunier et al. 2005), suggesting
its role as a defense mechanism preventing the expression of these elements.

Yeast, worms, and flies have generally been thought to lack DNA methy-
lation systems. In the case of fruit flies, this notion has been challenged by the
availability of whole genome sequences. Asingle DNAmethyltransferase has
been identified in the genome of Drosophila melanogaster (Hung et al. 1999), and
experimental work has detected low levels (<0.5%) of cytosine methylation in
the fly (Lyko et al. 2000). Moreover, methylated sequences in the fly were found
to be associated with CpT or CpAdinucleotides, in sharp contrast to the canon-
ical CpG motif often found methylated in mammals (Kunert et al. 2003).

DNA methylation is particularly interesting in the context of parent-of-
origin-dependent inheritance and genomic imprinting (Hajkova et al. 2002;
Delaval and Feil 2004). In genomic imprinting, the expression of a subset of
genes depends on “marked” maternal and paternal alleles that are recog-
nized and differentially regulated by the transcriptional machinery. Methy-
lation of CpG dinucleotides is the basis for the parent-specific mark. The
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or repressor receives and integrates various signals from regulatory proteins
that recognize specific binding sites; these signals are subsequently trans-
mitted to the transcriptional machinery located at the promoter. The inter-
action of all enhancer elements, repressor elements, and other factors at
the promoter results in the precise regulation of the timing, location, and
level of gene expression. 

Although more has been learned about the role of promoters and
enhancers in the regulation of transcription than about the role of any other
regulatory element, the elusive phenomenon of transvection reminds us
how little we know about even this most basic mechanism of gene regula-
tion. Transvection was first described in 1954 by E. B. Lewis in the context
of two mutations that complemented each other in spite of both being within
the Drosophila Ubx locus (see Duncan 2002 and references therein). This was
later recognized to arise from somatic pairing between one allele with a loss
of function mutation in its regulatory sequence and another allele with a
loss of function mutation in its coding sequence (Figure 5.2). It remains to
be understood how regulatory elements in one allele regulate the expres-
sion of its homolog on the other chromosome.

Epigenetic Regulation and Chromatin Modifications
Appropriate chromatin conformation is required for access and binding of
regulatory proteins to the DNA. The nucleosome is the fundamental repeat-
ing unit of chromatin. Made up of 146 base pairs of DNA wrapped around
an octamer of conserved core histone proteins, nucleosomes are linked
together to form a helical fiber. Each histone contains numerous sites for
potential modifications, which have been hypothesized to act in a combi-
natorial code to mark a region for potential activation or silencing. These
marks extend the information potential of the genetic code to provide a so-
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mapping of methylation and acetylation of H3 and H4 histones suggested
an “all-or-none” pattern (Shübeler et al. 2004; Liu et al. 2005): while the active
genes tended to be marked by all the assayed modifications, the non-tran-
scribed genes tended to have no histone marks. A similar, rather simple his-
tone code has also been suggested for budding yeast (Kurdistani et al. 2004;
Dion et al. 2005) and mammals (Bernstein et al. 2005). Nonetheless, yeast
also shows a more subtle pattern of modification in which clustering of
genes with similar patterns of acetylation distinguishes groups of coex-
pressed genes that are functionally related (Kurdistani et al. 2004). These
studies are also modifying our views of the correlation between histone
marks and gene expression by demonstrating that both hyper- and hypo-
acetylation of histones may be associated with gene activity. 

Chromosome territories and nuclear architecture 
Gene expression is most often studied from the standpoint of promoters,
enhancers, suppressors, and local epigenetic modifications. Less frequently
studied, however, is the impact of higher-order chromosome structure and
nuclear organization on gene expression. Nevertheless, a growing aware-
ness of the relevance of spatial chromosome dynamics in genomic expres-
sion, together with technological developments, has stimulated a surge in
interest and research in this area (e.g., Bolzer et al. 2005; Harmon and Sedat
2005; Pickersgill et al. 2006). 

The nucleolus is perhaps the best-known and most prominent structural
feature in the nucleus of most plant and animal cells. This cytological struc-
ture is the site where the ribosomal DNA (rDNA) regions of several chromo-
somes come together and rRNA transcription takes place (see Santoro 2005
for a review). Interestingly, there is substantial natural genetic variation in
the amount of methylation observed in rDNA regions of different Arabidop-
sis strains (Riddle and Richards 2002). This natural variation in rDNA methy-
lation may serve as yet another source of genetic variation in gene expres-
sion upon which natural selection can act.

In a less well-described regulatory mechanism, eukaryotic genomes are
functionally compartmentalized by attachment to the supporting nuclear
matrix (Bode et al. 2003). The overall dynamics of this structure are medi-
ated in part by elements of 300 base pairs to several kilobases named scaf-
fold/matrix-attachment regions (S/MARs)(e.g., Heng et al. 2004). In con-
junction, S/MAR-binding proteins act in trans to regulate gene expression.
Genome-wide predictions identify a large number of S/MARs (Frisch et al.
2002; Glazko et al. 2003) associated with enhancement as well as repression
of gene expression.

On a smaller scale, locus control regions (LCR) can be identified that coor-
dinately regulate promoters of several related genes spread over hundreds
of kilobases. This is achieved by close juxtaposition of different chromoso-
mal regions in the nucleus. This mechanism was recently shown to be rel-
evant in the regulation of genes involved in T-helper cell differentiation
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evolutionary relevance of genomic imprinting has been examined in detail
from a theoretical standpoint (see Wilkins and Haig 2003 and McDonald
et al. 2005 for recent reviews). Taken together, these observations underscore
the relevance of DNA methylation in the evolution of genomic expression.

Histone modifications
Five classes of eukaryotic histones are known (H1, H2A, H2B, H3, and H4),
all of which are lysine/arginine rich and have a globular domain that facil-
itates their assembly with DNA to form chromatin. Histones also have a
charged aminoNH2 terminus (the so-called histone tail) that is subject to var-
ious post-translational modifications (e.g., acetylation, methylation, and phos-
phorylation), which influence chromatin structure and gene expression. It
has been conjectured (Jenuwein and Allis 2001; Felsenfeld and Groudine
2003; Fischle et al. 2003) that the kind of histones, and their packing, location,
and post-translational modification make up an “epigenetic code,” which
is used by the cell to specify a precise and stable gene expression profile.

Histone deacetylases, histone acetyltransferases, and histone methyltrans-
ferases make up some of the trans-acting elements involved in regulating his-
tone modifications that ultimately influence gene expression. For instance,
chromatin enriched for acetylated histones is generally thought to be “open”
and accessible to transcription factors, thereby rendering its constituent genes
transcriptionally active, or potentially so (Grewal and Moazed 2003). Con-
versely, chromatin enriched for non-acetylated histones is generally thought
to be more “condensed,” thereby making its constituent genes inaccessible
to transcription factors and therefore silenced. Similarly, chromatin enriched
for methylated histones is generally thought to be less transcriptionally active
than other regions. Furthermore, DNA and histone methylation appear to
maintain a repressed chromatin state in plants and vertebrates, although such
links appear to be weaker in insects. Finally, we note that whereas histone
modifications are known to persist through cell division, much of the his-
tone code may be erased in meiosis; therefore, epigenetic memory is usually
thought to result from other DNA and chromatin modifications.

As a cautionary note we emphasize that recent functional genomic work
has questioned the specificity of the effects of histone modifications on gene
expression. For instance, Dion and colleagues (2005) examined the effect
of acetylation of four lysine residues in the tail of histone H4 in yeast. They
constructed yeast strains containing up to three lysine-to-arginine mutations
in the histone H4 tail, thus preventing acetylation while retaining the pos-
itive charge. All the single lysine-to-arginine substitutions showed quite
similar gene expression changes, irrespective of the particular lysine altered.
Similarly, all combinations of double mutants showed similar changes. This
lead Dion and coworkers (2005) to propose that histone H4 acetylation has
a simple cumulative effect on yeast gene expression, arguing against a more
complex model in which combinations of acetylated lysines “code” for
unique expression profiles. Furthermore, in D. melanogaster, a systematic

8 Chapter Five



1973; Chandler et al. 2000; Hollick and Chandler 2001), and more recently
discovered in mammals (Herman et al. 2003; Rassoulzadegan et al. 2006).
Paramutation involves heritable changes in gene activity without changes
in DNA sequence. The change in gene activity is mediated by heritable epi-
genetic modification induced by cross-talk between allelic loci (Figure 5.3).
Paramutation and paramutation-like phenomena do not adhere to rules of
Mendelian inheritance. Our knowledge of the underlying mechanisms is
limited, but evidence suggests a complex interplay of many epigenetic
processes, such as RNA silencing, physical pairing of homologous chromo-
somal regions, and chromatin modifications. The term paramutation has
come to describe many phenomena in which communication between two
alleles or homologous sequences establishes distinct, heritable epigenetic
states (Chandler and Stam 2004; Stam and Mittelsten Scheid 2005).

Post-Transcriptional Regulation
Once transcription has begun, the cell has a variety of post-transcriptional
mechanisms to regulate the final amount of functional gene product. In this
section we briefly outline some of the best-known mechanisms of post-tran-
criptional regulation of genomic expression, all of which involve the com-
plex interaction of cis- and trans-acting factors. 

The initial and most basic form of post-transcriptional regulation involves
the premature termination of transcription. This gene regulatory mecha-
nism is common in bacteria (Merino and Yanofsky 2005) and has been best
studied in the transcription of the HIV-I genome in host cells (Kessler and
Mathews 1992). It may also play a role in gene regulation in eukaryotes,
where premature termination of transcription typically results from the nas-
cent mRNA folding into secondary structures that are recognized by the cel-
lular apparatus (Muhlrad and Parker 1994; Arigo et al. 2006).

When a full-length RNA transcript is made, it is modified in several ways
that determine its cellular fate. Immediately after transcription, a methy-
lated guanine nucleotide is added to the 5’ end of all mRNA transcripts (5’
methylguanosine cap). This feature of mature mRNA is important for the
initiation of translation (Alberts et al. 2002). On the 3’ end of the immature
transcript, the RNA is cleaved at a specific site and a poly(A) tail is added.
This poly(A) tail, usually about 100–200 nucleotides long, is important for
regulating the export of the mRNA out of the nucleus, regulating the stabil-
ity and half-life of the transcript, and ensuring efficient translation at the
ribosome (Ross 1995; Alberts et al. 2001).

After transcription is complete, RNA splicing removes noncoding introns
and joins together neighboring exons. Alternative splicing, by joining
together different exons to create the mature transcript, can produce many
different proteins from a single gene. An extreme example of this is the
Drosophila Dscam axon guidance receptor, which can potentially generate
38,016 different protein isoforms (Graveley 2005; Crayton et al. 2006). Appro-
priately spliced and edited transcripts are then regulated further by trans-
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(Spilianakis et al. 2005; Spilianakis and Flavell 2006). To address the evolu-
tionary implications of such regulation, more information is needed about
the genome-wide prevalence and impact of regulatory processes involv-
ing nuclear architecture, as well as a detailed mechanistic understanding of
individual elements and their interactions. These processes undoubtedly
depend on modification of chromatin structure, and they suggest that dis-
persed multigene complexes are coregulated in part by structural colocal-
ization within the nucleus. How such structures vary across populations
and species remains virtually unknown.

The mechanistic complexity of epigenetic gene regulation is perhaps best
illustrated by paramutation—a phenomenon first described in peas (Bate-
son and Pellew 1915), most thoroughly studied in maize (Brink 1959; Brink
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ertheless, how these mechanisms impact the evolution of RNA abundance
and genomic expression remains largely uncharacterized.

Measuring Attributes of Genomic Expression with Experimental
and Computational Tools
The conservation of the genetic code across most of the tree of life facilitates
the identification of protein-coding genes from raw DNA sequences. In con-
trast, the precise identification of regulatory regions and mechanisms has
remained a difficult and elusive task. Unlike protein-coding sequences, reg-
ulatory domains are not readily identified by standard landmarks such as
start and stop sites, open reading frames, and the splice sites that delineate
introns from exons. Regulatory regions also do not possess characteristic
genome-wide particularities such as similar codon biases or parallel rates
of divergence among codon sites. In addition, regulatory modules are irreg-
ularly localized across the genome and the regulatory “code” appears to be
considerably more degenerate than the genetic code.

Despite these inherent difficulties, researchers have made substantial
inroads into identifying the sequences that control gene expression in a tem-
poral, spatial, and quantitative manner. The recent integration of empirical
analyses of gene expression and the high-throughput computational analy-
sis of transcriptional regulation on a genome-wide scale is beginning to reveal
how genomic regulation affects the transition from genotype to phenotype.

Typically, regulatory elements and motifs are found using two approaches,
both of which are ideally combined with experimental validation of the
sequences identified. First, homologous noncoding regions from different
species are compared, and regions with unexpected conservation are targeted
as being candidates for regulatory activity. Second, sequences from genes shar-
ing a particular attribute (e.g., coregulation, similar rate of mRNA decay, and
so forth) are compared in order to identify sequence features associated with
that particular attribute. The most often used attribute is coregulation across
a set of environmental treatments. In the next sections we outline major exper-
imental and computational techniques used in studies of genomic regulation.

Experimental approaches
One of the most common experimental approaches used to identify and ver-
ify candidate regulatory regions is to assay for altered regulatory activity
after mutation, a procedure generally known as “promoter bashing.” Typ-
ically, putative regulatory regions are cloned, mutated, and then checked
for differences in gene expression by reporter assays either in vivo or in vitro
(Stanojevic et al. 1991).

A technique that has become central to delineating the precise region of
transcription factor binding is DNAse footprinting (Brenowitz et al. 1986).
In DNAse footprinting, a binding site sequence is bound to its transcription
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port to appropriate parts of the cell; this intracellular transport is often medi-
ated by the untranslated 5’ and 3’ ends of mRNAs.

In a regulatory mechanism know as mRNAediting, the nucleotide sequence
of the transcript can be changed at specific places. Ordinarily, this process leads
to the production of protein variants differing in one or a few amino acids, but,
in its most dramatic manifestations, can determine the splicing and ultimate
cellular location of the final gene product (Maas and Rich 2000). An example
of mRNA editing is the modification of adenosine to inosine, which is recog-
nized as guanosine by the cellular machinery (Maas and Rich 2000; Barbon et
al. 2003). This modification is mediated by the trans-regulatory activity of
adenosine deaminases on an mRNA editing-site sequence, which represents
the cis-regulatory component of this mechanism of regulation.

In addition, mRNA degradation plays an important role in post-transla-
tional gene regulation. For example, the rate of mRNA degradation has been
shown to vary widely among genes (Wang et al. 2002; Foat et al. 2005). Degra-
dation of functional, mature mRNA is regulated by mRNA binding proteins
and is specified by various features, including sequence motifs and mRNA
secondary structures, usually in the 3’ untranslated region of the mRNA (Ross
1995). Another recent study found that genes with tightly folded 5’ untrans-
lated regions may have lower rates of translation, lower protein and mRNA
abundances, and shorter half-lives (Ringner and Krogh 2005).

Typically found in the 5’ untranslated regions of bacterial mRNAs,
riboswitches are structural elements that regulate gene expression post-tran-
scriptionally (Winkler et al. 2002; Tucker and Breaker 2005; Winkler and
Breaker 2005). Riboswitches regulate gene expression by binding to small
metabolites, without the involvement of other co-factors.

Finally, small regulatory RNAs, known as microRNAs, interact with a com-
plex set of cellular machinery to regulate the translation of targeted mRNAs
in eukaryotes. Jacob and Monod (1961) proposed that untranslated RNAs
might regulate gene expression in the lac operon. This idea was discredited
with the discovery of protein transcription factors, and was largely forgot-
ten until the discovery of microRNAs (Lau et al. 2001; Lee and Ambros 2001).
These represent an entire class of genes producing small (21 bases) untrans-
lated RNAs (Fire et al. 1998) in worms, flies, vertebrates, and plants (Bartel
2004). The microRNAs are transcribed from larger RNA genes and cleaved to
their active form, in which they bind to target mRNAs either precisely (pri-
mary mode of action in plants) or with a few base pairs of mismatch, target-
ing the mRNA either for silencing or degradation. The target sequences in the
mRNAcan be considered as cis-acting elements, whereas the microRNAs and
the enzymes that process them, as well as the proteins that perform the degra-
dation, constitute the trans-acting factors in this mechanism of regulation.

In summary, a lot has been learned about the various mechanisms that
regulate the differential expression of genomes and their genes. In some
cases, where the mechanisms are well-described and the relevant genes iden-
tified, the availability of whole genome sequences allows for a rapid assess-
ment of the conservation and phylogenetic distribution of these genes. Nev-
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cDNA pools are often normalized by subtractive hybridization, such that low
copy transcripts are enriched and highly abundant transcripts are removed,
they should generally be avoided as a guide to mRNA transcript abundance.
Serial analysis of gene expression (SAGE) is yet another technique for esti-
mating levels of gene expression, which makes use of the fact that a sequence
of about 15 nucleotides already contains enough information to identify (tag)
the genomic sequence in which it is embedded. In this technique, a large num-
ber of DNA molecules, each consisting of a series of short expressed tags
linked together in a single chain, are sequenced (Yamamoto et al. 2001). Each
tag is then assigned to its gene of origin, and the number of times a tag for a
given gene is found is used as a measure of the gene’s expression level.

PROTEIN–DNA INTERACTIONS The use of DNA microarrays is not limited
to the measurement of RNA abundance. They can also be used to explore
other aspects of gene expression that have to do with the state of the gene
being expressed (Figure 5.5). These techniques have been instrumental in
deciphering the genomic architecture of gene expression, and promise much

Evolution of  Genomic Expression 15

factor in vitro in order to protect it from partial DNAse cleavage. Partial
sequences of the protected fragments are then determined on a sequencing
gel and the precise location of binding identified. Electrophoretic mobility
shift assays (EMSA) can also be employed to identify transcription factor
binding sites. EMSA works on the principle that bound DNA migrates at a
different rate than unbound DNA. After two decades of footprinting exper-
iments, there are now species-specific databases, such as the Drosophila
DNase I Footprint Database (Bergmann et al. 2004), and more general data-
bases, such as ORegAnno (Montgomery et al. 2006), that serve as impor-
tant curated repositories for information on transcription factor binding sites.

The principles of transcriptional control have been elucidated by detailed
studies on individual genes. However, the global architecture of the regu-
latory network only began to be understood with the advent of microarray-
based methods (van Steensel and Henikoff 2003). These techniques permit
a genome-wide mapping of protein–DNA interactions, chromatin packag-
ing, and epigenetic modifications such as DNA methylation and histone
modifications. We outline these technologies and their main contributions
to our understanding of regulatory networks.

GENE EXPRESSION LEVELS Measuring gene expression level is the most fun-
damental requirement for studying the evolution of genomic expression. Sev-
eral techniques are available for this purpose, widely varying in terms of cost,
throughput, time investment, and practicality. Most recent techniques make
use of array technologies in which the abundance of a given message is
assessed by hybridizing a labeled cDNA sample to spotted microarrays.

DNA microarrays can vary extensively in the length of the DNA sequence
in each spot (from cDNA clones, to single-exon PCR products, to medium-
sized oligonucleotides of about 60–70 nucleotides, to very short oligonu-
cleotides of less than 35 nucleotides), as well as in terms of genomic cover-
age. Tiling arrays, for instance, can cover both protein-coding as well as
non-protein-coding sequences and provide a high-resolution sliding win-
dow view of expressed sequences in a particular genomic region or—at
lower resolution—over the entire genome (Mockler et al. 2005). Use of tiling
arrays has uncovered a large number of noncoding expressed sequences,
many of which are transcribed from intergenic sequences. Figure 5.4 sum-
marizes the important steps in the microarray analysis of gene expression
levels. A limitation of oligonucleotide arrays is that the intensity of the sig-
nal may be overly sensitive to sequence mismatches. This will cause diffi-
culties if there is genetic variation between the samples being contrasted,
an obvious issue in evolutionary comparisons. 

Two sequencing-based methods are still used to study genomic expression,
but are being superseded by array technologies, even for nonmodel organ-
isms. Expressed sequence tags (ESTs) were often used in early studies of
genome-wide gene expression. ESTs are sequences obtained by random
sequencing of clones from cDNA pools and were mostly produced in paral-
lel with genomic projects in model organisms (Hatey et al. 1998). Because
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• Sample design
• Amplification
• Labeling

RNA extraction

• Oligo, cDNA, tiling
• Randomization
• Spike-ins, controls

Microarray design

• Replicates, experimental design
• Hybridization stringency

Hybridization

• Background subtraction
• Normalization

Image analysis

• Statistical analysis: clustering, ANOVA
• Data mining and bioinformatics

Data analysis

Figure 5.4 Microarray experimen-
tal design. The main steps of a typ-
ical experiment are highlighted.
Specific procedural operations are
also listed. Steps performed away
from the lab bench are labeled in
red. Specific control DNA might be
spotted in the array if spike-ins of
foreign RNA of known concentra-
tion is to be used for data normal-
ization.
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DNA METHYLATION Another DNA modification that affects a gene’s tran-
scriptional state is DNA methylation. Several techniques have been devel-
oped to map the distribution of 5-methylcytosine (m5C) in eukaryotic
genomes. In the MSO (methylation-specific oligonucleotide microarray)
technique, genomic DNA is treated with sodium bisulfite, which converts
unmethylated, but not methylated cytosine into uracil (Adorján et al. 2002).
During subsequent PCR, the DNA polymerase reads uracil as thymine and
cytosine as guanine. To discriminate methylated and unmethylated cyto-
sine at specific nucleotide positions in the original DNA, a specially designed
oligonucleotide microarray is used: it contains a set of oligonucleotides with
different combinations of guanine (to detect unmethylated cytosine) or ade-
nine (to detect methylated cytosine) substituted at the cytosine positions
(Adorján et al. 2002; Gitan et al. 2002). Another method uses methylation-
sensitive restriction enzymes (MSRE). For instance, the enzyme McrBC cuts
methylated, but not unmethylated DNA. After shearing, McrBC-treated
genomic DNA samples are depleted in the high molecular-weight fraction
if the original DNA was methylated. Microarray hybridizations can then
identify the methylated fragments. Many variations of this approach have
been reported (e.g., Lippman et al. 2005).

Computational approaches
With the recent availability of genome sequences and transcription profiles,
along with advances in the field of computational biology, researchers have
begun to successfully investigate regulatory regions at structural and func-
tional levels. The power to detect, describe, and model conserved motifs
both within and between species has increased substantially. Researchers
are no longer restricted to analyzing a small subset of sequences from a par-
ticular gene (usually promoter regions), but can now apply motif-finding
principles to large regions around many genes (Nardone et al. 2004). The
combination of computational and empirical tools has resulted in powerful
approaches to the discovery of regulatory regions across genomes. There
are now a large number of online resources for the analysis of regulatory
sequences, including searchable databases (Table 5.1) and computational
biology tools (Table 5.2).

While finding promoters in a genome is assisted somewhat by knowing
the positions of genes, promoter discovery from raw nucleotide sequences
is, in many ways, a much more difficult task than finding protein-coding
sequences. Promoters comprise a large and diverse set of sequences and show
no clear defining signature. Also, because many mammalian genes have large
noncoding 5’ exons, promoters are located at variable distances from the gene
that they regulate. As a result, promoter prediction algorithms must strike
a balance between finding real regions of interest and falling victim to false
positives. Fortunately, empirical studies of gene regulatory elements have
generated a large and diverse template for computational biologists to con-
struct genome-scanning algorithms (e.g., Fickett and Hatzigeorgiou 1997).

Evolution of  Genomic Expression 19

for future use in evolutionary biology. ChIP-on-chip is the more commonly
used method to analyze protein–DNA interactions. The technique combines
chromatin immunoprecipitation (ChIP) and microarray analysis (Weinmann
and Farnham 2002). Cells are treated with a chemical agent (typically
formaldehyde) that cross-links the protein complexes in situ to DNA. The
chromatin is then fragmented and immunoprecipitated using specific anti-
bodies that recognize the protein of interest. To identify the DNA sequence
of the binding site, the cross-link is reversed, and the DNA fragments are
labeled with fluorescent dye and hybridized to microrrays. Two other, com-
plementary approaches, DamID (van Steensel and Henikoff 2000) and PBM
(protein-binding microarray; Mukherjee et al. 2004), employ direct in situ
labeling (methylation) of the bound DNA and in vitro identification of tran-
scription factor binding sites, respectively.

With these approaches, basic questions about the regulatory network can
be answered. For instance, how many genes are under control of one par-
ticular transcriptional factor? In S. cerevisiae, systematic studies of 106 tran-
scription factors showed that, on average, about 40 genes are targeted by
any given factor, the upper limit being 180 genes (Lee et al. 2002). In higher
eukaryotes, it seems that some transcription factors also interact with even
larger sets of promoters (Orian et al. 2003). A complementary question is:
how many transcriptional factors link to a particular gene? More than one
third of the genes in S. cerevisiae are bound by two and more factors (Lee et
al. 2002), and some genes can have more than 12 transcription factors bound.
These figures are expected to be underestimates because they depend on an
arbitrarily chosen, conservative statistical threshold. In addition, almost
all studies have focused on the upstream regions of genes, but downstream
regions and introns also play an important role in the regulation of gene
expression (e.g., Martone et al. 2003). These techniques have not yet been
used to ask how transcription factor interaction patterns change between
related species.

CHROMATIN PACKAGING Microarray technologies have also been used
to investigate chromatin states along chromosomal regions. One set of
methods takes advantage of the resistance of condensed chromatin to
nuclease digestion, followed by separation of different-sized chromatin
fragments by sedimentation in a sucrose gradient. The relaxed chromatin
in each fraction is extracted after fractionating in an agarose gel (Gilbert
et al. 2004). The DNA fragments can then be labeled and hybridized to
microarrays. A second approach uses DNase I and separation in agarose
gels to isolate condensed or relaxed chromatin (Sabo et al. 2006). Such stud-
ies have revealed that relaxed chromatin is tightly correlated with high
gene density in the chromosomes (e.g., Gilbert et al. 2004). Perhaps more
surprisingly, no correlation was found between gene expression level and
the distribution of relaxed chromatin. Genes may be active even in con-
densed chromatin regions, and inactive in relaxed regions (Gilbert and
Bickmore 2006).
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In contrast to these signal-based methods, another way to find sequence
motifs is based purely on the sequence content. Characteristic patterns of
conserved sequences may be found among coregulated genes or among
orthologous sequences of different species, for example, overrepresentation
(relative to random noncoding sequence) of putative sequence motifs. The
human genome contains approximately 1850 distinct transcription factors
and the number of potential combinations of any number of these acting
upon a particular gene is enormous.

COMPARATIVE GENOMICS AND PHYLOGENETIC FOOTPRINTING A powerful
and popular approach to decoding regulatory sequences is comparative
genomics. By finding sequences that are conserved across species, one can
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TRANSCRIPTION FACTORS BINDING SITES AND SEQUENCE MOTIF DISCOVERY
The experimental elucidation of binding sites for individual transcription
factors has provided computational biologists with an indispensable tool.
From a set of known aligned binding sites, positional matrices (sometimes
called profiles or position-specific scoring matrices) of base pair frequencies
can be generated. Different algorithms use various implementations of this
signal-based data, including position weight matrix (PROMOTER2.0) and
neural net (ProScan). Motifs can be short and contiguous or bipartite and
long. The latter includes, for instance, palindromic sequences separated by
a spacer element that is usually variable in length. Regulatory sequences
can be readily visualized using a sequence logo format, which transforms
matrix data into visual information.
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Table 5.1 Online regulatory resources: searchable databases

Database Description Web address

Promotersa

DoOP Database of orthologous http://doop.abc.hu/
clusters of promoters

EPD Eukaryote POLII promoter http://www.epd.isb-sib.ch/
database

Worm DB C. elegans promoter database http://rulai.cshl.edu/cgi-bin/CEPDB/home.cgi
Mammal DB Mammalian promoter databases http://rulai.cshl.edu/CSHLmpd2/
SCPD Promoter database for S. cerevesiae http://rulai.cshl.org/SCPD/index.html
PlantProm DB Plant promoter database http://mendel.cs.rhul.ac.uk/mendel.

php?topic=plantprom
Motifsb

Transterm Translational signal database http://guinevere.otago.ac.nz/transterm.html
(mRNA motifs) 

PLACE Plant cis-acting regulatory http://www.dna.affrc.go.jp/htdocs/PLACE/ 
DNA elements database

Transcription Factorsc

TRANSFAC TF database http://www.gene-regulation.com/pub/
databases.html#transfac

ooTFD Object-oriented TF database http://www.ifti.org/ootfd/
ProteinLounge TF database http://www.proteinlounge.com/

TFdb trans_home.asp
MIRAGE Resource for the analysis of http://www.ifti.org/

gene expression
PRODORIC Prokaryote database of gene http://prodoric.tu-bs.de/

regulation
TFdb RIKEN mouse TF database http://genome.gsc.riken.jp/TFdb/
AGRIS Arabidopsis gene regulatory http://arabidopsis.med.ohio-state.edu/

information server

Table 5.1 Continued

Database Description Web address

Transcription Factorsc (continued)
RARTF RIKEN Arabidopsis TF database http://rarge.gsc.riken.go.jp/rartf/
RiceTFDB Rice TF database http://ricetfdb.bio.uni-potsdam.de/
DBTBS Transcriptional regulation http://dbtbs.hgc.jp/

database in B. subtilis
RegulonDB E. coli K-12 database for http://www.cifn.unam.mx/

transcriptional regulation Computational_Genomics/regulondb/
Ecoli TFDB E. coli TF database http://bayesweb.wadsworth.org/binding_sites/

Transcription Factor Binding Sitesd

FlyReg Drosophila DNase I footprint http://www.flyreg.org/
database

ORegAnno The open regulatory annotation http://www.bcgsc.ca:8080/oregano/Index.jsp
JASPAR TF binding profile database http://jaspar.cgb.ki.se/cgi-bin/jaspar_db.pl
MAPPER Multi-genome analysis of http://bio.chip.org/mapper

positions and patterns
DNASTAR TF binding site database http://www.dnastar.com/web/r50.php
TFSEARCH Search TF binding sites http://www.cbrc.jp/research/db/TFSEARCH.html
TESS Predicting transcription binding sites http://www.cbil.upenn.edu/tess/

aThese publicly available databases contain a curated list of promoter regions from various species. Data can be
downloaded in bulk or individually visualized by searchable IDs such as GenBank accession numbers or gene
names.
bMotifs of various kinds are available from these interactive databases. Motifs can be searched against specific
sequences and genomes.
cA useful set of curated databases of known transcription factors (TFs) and their protein domains. TFs may be
downloaded in bulk. Some sites offer in-house Blast portals.
dThese databases, some species-specific, are generated from literature reports of footprinting experiments. Tran-
scription factors, their binding sites in the genome, and sometimes also their binding affinities, are reported.
Depending on the website, phylogenetic conservation of the binding sites may also be reported.



Since the highlighting of conserved regions has become such an impor-
tant tool, the major genomic databanks have started to provide genome
browsers that allow one to easily visualize conserved regions. NCBI’s Map
Viewer (National Center for Biotechnology Information), EMBL-EBI (Euro-
pean Molecular Bioinformatics Laboratory), and the UCSC Genome Browser
(University of California at Santa Cruz) possess excellent graphical inter-
faces for users to search for conserved orthologous regions. In addition,
VISTA and PiPMaker are popular phylogenetic footprinting tools.

The Evolution of Genomic Expression: What Do We Know?
Evolutionary genomics is beginning to address the molecular evolution of
regulatory sequences and the phenotypic evolution of mRNA abundance.
Ultimately, this approach may provide a comprehensive understanding of
the magnitudes and patterns of evolutionary variation in regulatory
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quickly infer whether they are functionally important without using costly
molecular or biochemical procedures. Phylogenetic footprinting aims to find
functionally important regulatory regions by identifying conserved orthol-
ogous sequences (Gumucio et al. 1993; Hardison et al. 1997). This approach
has been very successful with the advent of complete genome sequences
from model genetic organisms. Deep-rooted phylogenetic taxa can be used
to find invariant regions indicative of constrained function, and closely
related sister taxa can be used to find regions of sequence conservation, as
well as genus-specific regulatory units, among species with a more shallow
ancestry (i.e., phylogenetic shadowing; Boffelli et al. 2003). 
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Table 5.2 Online regulatory resources: search tools

Data base Description Web address

Promoter Predictiona

McPromoter The Markov Chain Promoter  http://genes.mit.edu/McPromoter.html
Prediction Server

NNPP Promoter Prediction by Neural http://www.fruitfly.org/seq_tools/
Network promoter.html 

TRES Comparative Promoter Analysis http://bioportal.bic.nus.edu.sg/tres/ 
PromoterWise Compares 2 DNA sequences, ideal http://www.ebi.ac.uk/Wise2/promoterwise.html

for promoters 
PromoSer Batch retrieval of proximal promoters http://biowulf.bu.edu/zlab/PromoSer/ 

Motif Searchingb

MOTIF Search Search motifs http://motif.genome.jp/
EZRetrieve Sequence retrieval tool http://siriusb.umdnj.edu:18080/EZRetrieve/
Possum Detect cis-elements in DNA sequences http://zlab.bu.edu/~mfrith/possum/ 
CorePromoter Core-Promoter Prediction Program http://sciclio.cshl.org/genefinder/CPROMOTER/ 
Gene Express Analysis of genomic regulatory http://wwwmgs.bionet.nsc.ru/ 

sequences systems/GeneExpress/
Phylogenetic Footprintingc

Phylofoot Portal to phylogenetic footprinting http://www.phylofoot.org/
UCSC UCSC Genome Browser http://genome.ucsc.edu/cgi-bin/hgGateway
TraFaC Finds conserved cis-elements http://trafac.cchmc.org/trafac/index.jsp

across species
PipMaker Aligns similar regions of sequence http://pipmaker.bx.psu.edu/pipmaker/
VISTA Suite of programs that aligns http://genome.lbl.gov/vista/index.shtml

genomic sequences
LAGAN Comparative genomic alignment http://lagan.stanford.edu/lagan_web/

programs index.shtml
FootPrinter Phylogenetic footprinting of http://bio.cs.washington.edu/software.html

orthologous sequences
Bayesaligner Phylogenetic footprint using a http://bayesweb.wadsworth.org/cgi-bin/

Bayesian approach bayes_align12.pl

Table 5.2 Continued

Data base Description Web address

TF and TF Binding Sitesd

ConSite FTF binding sites via aligned http://mordor.cgb.ki.se/cgi-bin/CONSITE/
genomic sequence consite

TFSEARCH Transcription factor search http://www.cbrc.jp/research/db/
TFSEARCH.html 

MSCAN Find functional clusters of TF http://mscan.cgb.ki.se/cgi-bin/MSCAN 
binding sites

Weeder Web TF binding sites in sequences via  http://159.149.109.16
co-regulated genes

SITECON Conserved physicochemistry in  http://wwwmgs.bionet.nsc.ru/mgs/
TFBS alignments programs/sitecon/ 

POBO TF binding site verification with  http://ekhidna.biocenter.helsinki.fi:9801/pobo/
bootstrapping

DTFAM Explores TF associations through  http://research.i2r.a-star.edu.sg/DRAGON/
text-mining TFAM/ 

Fly Enhancer Finds clusters of binding sites in http://flyenhancer.org/Main
Drosophila

AliBaba Prediction of transcription factor  http://www.alibaba2.com/ 
binding sites

aA set of promoter prediction software publicly available online. Your sequence of interest can be uploaded onto
each webserver in order to identify promoter regions using a wide variety of approaches.
bMotifs in uploaded sequences can be detected using a multitude of methods from these websites. These tools
represent just a handful of available online resources to identify motifs.
cThese online alignment sites allow one to find conserved sequences in regulatory regions. Some of these web-
sites already contain precomputed alignments of regulatory regions from sequenced genomes.
dThese sites contain tools that allow you to search your sequence of interest for transcription factors and their
binding sites.



pheromone production (Takahashi et al. 2001). Closely related species of
cichlid fishes have different visual spectral sensitivities, which probably has
important consequences for the foraging behavior of these fishes and their
mate choice (based on male coloration). Differences in visual sensitivity are
often achieved by shifts in chromophore usage or in opsin coding sequences,
but in this case they are caused by changes in opsin gene expression (Car-
leton and Kocher 2001). Finally, the colors and patterns of eyespots on but-
terfly wings are yet another system in which a connection between varia-
tion in the expression of specific genes and higher-level evolutionary
changes has been established (Brunetti et al. 2001; Beldade and Brakefield
2002).

Molecular evolution of regulatory sequences
The study of protein-coding sequences has been boosted by the explosion of
comparative data coupled to new statistical methods for analyzing and inter-
preting coding sequences. Current methods have incorporated a number of
factors regarding rates of coding sequence variation (e.g., transition/trans-
version ratios, position heterogeneity), and have allowed several genome-
wide analyses of the selective forces acting on protein sequences (e.g., Nielsen
et al. 2005). Most of these analyses were based on models and statistical tests
on the ratio of nonsynonymous (dN) to synonymous (dS) nucleotide substi-
tutions. It is noteworthy that genome-wide analyses have also challenged
the very assumptions that underlie using dS as a reliable proxy for the neu-
tral mutation rate (Wyckoff et al. 2005), which suggests that classical inter-
pretations may need to be reevaluated.

Historically, the molecular evolutionary analysis of regulatory sequences
has largely remained outside the mainstream of such analyses of coding
sequences. This is not because the relevance of regulatory evolution has been
underappreciated, but is rather due to the major challenges inherent to the
evolutionary analysis of noncoding DNA. First, despite the large number
of mechanisms of gene regulation already described, qualitatively novel
mechanisms are still being discovered. These elusive mechanisms relate to
mRNA genes, microRNAs, S/MARs, and nuclear organization, to cite a few.
Similarly, several ultra-conserved noncoding DNA sequences have been iden-
tified (e.g., Bejerano et al. 2004) whose functional role is unknown. Hence,
developments in the last ten years have uncovered a variety of regulatory
mechanisms whose evolution has yet to be investigated, let alone modeled
and fully incorporated into mainstream studies of molecular evolution. It is
clear, nevertheless, that a huge variety of elements and regulatory phenom-
ena influence genomic expression, and a truly comprehensive theory for the
evolution of regulatory sequences should include all these mechanisms.

Second, little is known about the evolution even of noncoding DNA with
apparently obvious relevance to genome expression. For example, there is
now a vast amount of data regarding promoter functioning and its regula-
tion by other elements such as enhancers. This is particularly well-illustrated
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sequences and relevant phenotypes. Transcription is the first step in the
mapping of genetic variation to higher-level phenotypes and, therefore,
diversity in gene expression levels is one of the most direct phenotypic out-
comes of regulatory variation. This diversity is now being widely docu-
mented and interesting patterns are being discovered. Understanding how
genomic regulation translates into variation in gene expression levels is thus
the first step towards understanding variation in more complex organismic
features. Because of this, gene expression levels are likely to become a model
phenotype for testing current methods and assumptions in our understand-
ing of the dynamics of polymorphism and divergence in natural popula-
tions, including ecologically relevant and disease-related variation. How-
ever, virtually nothing is known about evolutionary variation in attributes
that affect variation in gene expression (e.g., rates of mRNA degradation,
levels of methylation, nucleosome positioning, and so forth). In this section
we review our current understanding of the patterns and processes affect-
ing the evolution of genomic expression.

Genomic expression and morphological evolution
We know a lot more about variation in the coding sequence of genes than
about variation in regulatory regions or in gene expression patterns. Yet vari-
ation in gene expression is likely to account for a large fraction of the phe-
notypic diversity observed within and between species. Abundant exam-
ples of regulatory variation contributing to phenotypic diversity at the
morphological, behavioral, and physiological levels illustrate the role of reg-
ulatory evolution in phenotypic and adaptive diversification.

An early and now classical demonstration of the relevance of regulatory
variation in evolution was provided by Cherry, Case, and Wilson in 1978.
These authors took metrics of shape typically used by systematists interest-
ing in distinguishing between species of frogs to measure morphological
differences between humans and chimpanzees. The striking result was that,
morphologically, human and chimps are much more different from each
other than are species of frogs belonging to different suborders. This result
stands out because, while suborders of frogs show considerable differences
in protein-coding DNA sequences, humans and chimps are remarkably sim-
ilar to each other at the DNA level. This suggests a substantial role for reg-
ulatory evolution in the human–chimp divergence. 

In another example, the pattern of hairs on the first instar larva varies
among closely related species of the Drosophila melanogaster group and the
evolution of cis-regulatory elements of the ovo/shaven-baby gene is respon-
sible for hair patterning in Drosophila sechellia, distinguishing it from its clos-
est relative (Sucena et al. 2003). Similarly, the cuticular hydrocarbon
pheromones involved in mating preference in D. melanogaster display geo-
graphic variation in the 5,9-heptacosadiene/7,11-heptacosadiene ratio. This
polymorphism is caused by a deletion in the promoter region of a desat-
urase gene, changing its expression pattern and causing knock-on effects on

24 Chapter Five



Stabilizing selection,positive selection,and neutrality 
of gene expression levels
It has long been realized that stabilizing selection (i.e., purifying selection) is
a pervasive force in the evolution of higher-order morphological phenotypes,
as well as protein-coding sequences. Gene expression levels are no exception
to this pattern, and increasing evidence suggests a fundamental role for sta-
bilizing selection in restricting evolutionary variation in transcript levels
(Denver et al. 2005; Jordan et al. 2005; Lemos et al. 2005b; Rifkin et al. 2005). 

The high conservation of gene expression levels across species is partic-
ularly striking in view of the ample supply of mutations expected to influ-
ence gene expression across evolutionary timescales, as measured by the
experimental accumulation of mutations and their effects on gene expres-
sion levels (Figure 5.6). In particular, Denver and colleagues (2005) and Rifkin
and colleagues (2005) used mutation accumulation lines of worms and flies,
respectively, to experimentally estimate the neutral mutation rate for gene
expression levels at about 10–5. Although this rate is about two orders of mag-
nitude below the typical value found for a number of morphological and
enzyme activity traits (Lynch 1988), mutation accumulation lines still have
more dispersion in mRNA abundances than is observed across genotypes
segregating in natural populations (Denver et al. 2005). Accordingly, it has
been suggested that gene expression divergence between yeast gene dupli-
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in the case of gene regulation in the human and mouse immune systems. In
spite of this wealth of information, a comprehensive understanding of gene
regulation from the perspective of promoter activity is still missing. As a
consequence, although promoters have long been recognized as the site for
transcriptional regulation, few evolutionary analyses have been carried out.

In spite of these challenges, a few recent studies have attempted to define
structural features of regulatory sequences (Dermitzakis et al. 2003; Chin et
al. 2005), as well as to develop metrics for measuring regulatory divergence
of these sequences (Castillo-Davis et al. 2004; Chin et al. 2005). These stud-
ies are also complemented by analysis of patterns of substitution in noncod-
ing DNA within and between species (Andolfatto 2005). All in all, these stud-
ies provide new venues to explore the evolution of regulatory sequences,
and suggest promising directions for future research.

Dermitzakis and coworkers (2003), for instance, found that conserved
noncoding sequences are often under stronger selective constraint than pro-
teins and noncoding RNAs. Furthermore, the patterns of evolutionary vari-
ation in conserved noncoding sequences are distinguishable from those
observed for protein-coding sequences. Substitutions in noncoding
sequences were more clustered along the sequence compared to those in
protein-coding sequences (Dermitzakis et al. 2003), presumably because
purifying selection pressure is unevenly distributed along regulatory
sequences. Moreover, noncoding sequences showed more symmetric rates
of divergence (i.e., A → T and T → A, or C → G and G → C) than coding
sequences. Recent work by Moses and colleagues (2003) attempted to char-
acterize the pattern of evolution within transcription factor binding sites
in yeast, which were shown to evolve more slowly than background
sequences. In addition, they found substantial position-specific variation in
rates of sequence evolution within transcription factor binding sites. While
some positions within transcription binding motifs were highly conserved,
rates of evolution in less important sites could not be distinguished from
background rates. Furthermore, Moses and colleagues (2003) found a strong
correlation between positional rate variation in a single genome and that
observed between genomes. Work by Chin and coauthors (2005) is also illus-
trative. These authors used a hidden Markov model (HMM) to break down
promoters into selectively neutral regions and evolutionarily constrained
regions under purifying selection. The latter contained an overabundance
of regulatory motifs. Chin and coauthors (2005) estimated that about 30 per-
cent of the promoter sites in yeast are evolving under purifying selection,
whereas the remaining 70 percent are accumulating mutations at the neu-
tral rate. Another interesting study by Keightley and coworkers (2005) com-
pared the extent to which sequence conservation differs between two pairs
of species. They found that the conservation of noncoding sequences
upstream (5’) of the coding region was substantially greater in mouse–rat
comparisons than in human–chimpanzee comparisons. Based on this obser-
vation, the authors argued that purifying selection on regulatory variation
has been less efficient in primates than in rodents.
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gene expression level (Lande and Arnold 1983). It is therefore important to
consider whether any gene-by-gene metric of gene expression variability and
divergence is an adequate descriptor of the biological complexity. This is
because gene expression profiles might be more meaningfully examined as
a single complex character (e.g., a network) instead of a simple collection of
single-gene similarities and differences. The quantification of biological diver-
gence and polymorphism on a truly systemic scale remains elusive, and the
development of biologically meaningful multivariate descriptors of gene
expression states remains a challenge. Such descriptors would integrate
across entire pathways, functional groups, and interrelated modules.

The normalization of mRNA abundance data across samples is another
difficult area in the analysis of gene expression variation across evolution-
ary timescales. This is because normalization methods commonly assume
that total mRNA abundance is constant across samples or, in other words,
that only a small number of genes differ in expression levels between sam-
ples (Quackenbush 2002). This is a fundamental problem because evolu-
tionary comparisons often involve a large number of differences in gene
expression levels; therefore, the assumption of similar mean expression level
across samples may not always hold. The potentially confounding effect
of sequence divergence on estimates of mRNA abundance is another fun-
damental issue when analyzing and interpreting polymorphism and diver-
gence data. Along these lines, Gilad and colleagues (2005) examined how
normalization procedures interact with sequence divergence to produce
biased estimates of gene expression levels. They found significant effects
even between samples that are as similar as humans and chimpanzees.

What constrains or promotes evolutionary variation 
in gene expression levels?
Understanding the constraints imposed upon evolutionary variation in gene
expression levels is a major research goal of evolutionary genomics. This goal
includes not only identification of the sources of constraints on expression
levels but also, equally challenging, reconstruction of the selective landscape
underlying evolutionary variation in gene expression levels. Although direct
causation is elusive and hard to establish, several factors have so far been
shown to be associated with evolutionary variation in gene expression lev-
els. Furthermore, we note that, whatever the determinants of gene expression
polymorphism and divergence might be, there seem to be remarkable com-
monalities in the patterns and relative magnitudes of evolutionary variation
in gene expression and protein-coding sequences—so much so that a positive
correlation between these two modes of evolution can be detected (Nuzhdin
et al. 2004; Khaitovich et al. 2005; Lemos et al. 2005b; Liao and Zhang 2006).

Parisi and coworkers (2003) and Ranz and coworkers (2003) found exten-
sive differences in whole-organism transcriptional profiles of male and female
adult fruit flies. These authors showed that about half the genome is differ-
entially expressed between the sexes and argued for the relevance of sex-
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cates (Oakley et al. 2005) or between orthologous genes in different species
(Lemos et al. 2005b) does not follow a phylogenetic model, in that closely
related genes are not more likely than distantly related genes to show simi-
lar expression levels. Instead, the comparisons suggest that gene expres-
sion evolution proceeds so rapidly that the magnitude of divergence quickly
saturates—due solely to the high mutation rates associated with mRNA
abundances—even in the absence of diversifying or positive natural selec-
tion. Diversifying and positive selection would only further increase the rate
of gene expression evolution, thereby leading to an even more rapid satu-
ration of the evolutionary signal. Indeed, Ferea and colleagues (1999) and
Toma and colleagues (2002) showed that large differences in gene expression
can be accomplished in only a few generations of artificial selection.

These conclusions are in sharp contrast with a suggestion that gene expres-
sion variation may be unconstrained (Khaitovich et al. 2004). This sugges-
tion was motivated by the finding that the divergence of translated mRNAs
did not seem to be lower than that of transcribed pseudogenes, whose mRNA
is not capable of producing a functional protein. However, results from com-
parisons between translated mRNAs and untranslated mRNAs derived from
pseudogenes should generally be interpreted with caution. This is because
untranslated mRNAs that happen to be expressed across timescales as long
as that observed between species are unlikely to be nonfunctional.

An important question whose answer is not yet completely apparent
regards the major forces that produce evolutionary differences in gene expres-
sion levels. Although the prevalence of stabilizing selection appears to be
beyond doubt, it remains to be established whether gene expression differ-
ences between species or populations arise mainly through fixation by pos-
itive selection of distinct expression alleles in different environmental con-
texts or, alternatively, through fixation by random genetic drift of selectively
equivalent expression states. The neutral theory of molecular evolution devel-
oped by Kimura (Kimura 1983) and others promoted the view that most seg-
regating variation within species, as well as most fixed differences in protein
sequences between species, arise from selectively equivalent alleles whose
small differences have negligible effects on organismal fitness. Consequently,
most differences observed between species and populations would result
from random fixation of equivalent or nearly equivalent alleles. It should be
stressed that the prevalence of stabilizing selection on transcription levels
does not imply that a gene’s mRNA abundance is at its optimum or that it
has a negligibly small environmental or mutational variance.

Furthermore, we must note a few shortcomings of many analyses of gene
expression divergence and polymorphism. First, most statistical methods
for identifying gene expression differences test each gene independently
of all others, one gene at a time. However, genes are often coordinately reg-
ulated as gene expression modules and these modules, rather than the genes
themselves, may often be the relevant targets for evolutionary analysis.

In fact, evolutionary biologists have long debated the proper multivari-
ate description of biological complexity, a problem by no means restricted to

28 Chapter Five



2005b). Finally, it can be predicted that genes not essential for organismal
survival will be less constrained to vary in expression level. This prediction
is supported by the observation that nonessential genes show greater genetic
variation for gene expression than essential genes among natural isolates of
wine yeasts (Landry et al. 2006). Finally, we note that the presence of a TATA-
box motif in the promoter of genes has been positively associated with a
gene’s level of gene expression polymorphism and divergence, whereas
TATA-less genes show decreased levels of evolutionary variation (Tirosh et
al. 2006). Figure 5.7 shows some attributes associated with evolutionary vari-
ation in gene expression levels, as well as the sign of the effect.

Inheritance of gene expression levels:
Regulatory variation in cis and trans
An understanding of the evolution of gene regulation and particularly of
the evolutionary forces that control and direct it—mutation, genetic drift,
and natural selection—requires the study of genetic variation for gene
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dependent evolution of gene regulation. Moreover, by classifying genes as
male- or female-biased (i.e., gene expression higher in males or females,
respectively), Ranz and colleagues (2003) and Meiklejohn and colleagues
(2003) showed that male-biased genes have higher levels of gene expression
polymorphism and divergence than female-biased and unbiased genes. 

The functional class or biological process of a gene product is another
attribute relevant to evolutionary variation in gene expression levels. Expres-
sion variation in genes from functional classes closely related to transcrip-
tional regulation (e.g., transcription factors) might be expected to influence
gene expression more strongly than variation in genes from functional
classes more distantly related to transcriptional regulation (e.g., metabolic
enzymes). This prediction was verified in a number of studies (e.g., Rifkin
et al. 2003; Lemos et al. 2005b), suggesting that the expression levels of tran-
scription factors are indeed more tightly controlled than the expression lev-
els of metabolic enzymes. Classically, two sets of genes have been shown to
evolve rapidly at the level of the protein-coding sequence: immune
system–related genes and male reproduction–related genes. As discussed
above, genes that tend to be more expressed in males also tend to show
higher levels of polymorphism and divergence in expression. Genes of the
immune system also appear to show the same trend towards faster regula-
tory evolution. Genes of the major histocompatibility complex (MHC) have
been known for a long time to be under balancing selection (reviewed in
Bernatchez and Landry 2003), which acts to maintain high levels of poly-
morphism in the coding sequences of these genes. A recent study (Loisel et
al. 2006) on the evolutionary history of cis-regulatory regions of a MHC gene
(DQA1) in primates shows that balancing selection also acts on transcrip-
tion factor binding sites to maintain functional nucleotide variation with
consequences on gene regulation.

Physical attributes such as the number of protein–protein interactions
and mRNA abundance may also be relevant for determining the magnitude
of evolutionary variation in gene expression levels. For instance, proteins
that interact might impose mutual stoichiometric constraints on the amount
of variation permitted in their concentrations. This is because a change in
the concentration of one protein might result in a stoichiometric cost in its
interacting partners. Following this, it is expected that the concentration of
proteins whose function depends on direct interaction with a large number
of partners should be more evolutionarily constrained than proteins with
fewer interacting partners. This prediction has been confirmed using evo-
lutionary variation in gene expression levels as a proxy for evolutionary
variation in protein concentration (Lemos et al. 2004). Absolute mRNA abun-
dances may be another physical factor highly relevant to evolutionary vari-
ation in gene expression levels. It has been suggested that highly expressed
genes might show higher levels of expression polymorphism and diver-
gence (Lemos et al. 2005a). However, it remains unclear to what extent this
observation depends on the particular metric used and the accuracy of gene
expression assays across a wide range of absolute values (Lemos et al.
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its effect on gene expression is potentially easier to identify as individual
regulatory mutations than trans-regulatory variation. This is because indi-
vidual mutations in cis are clear QTL candidates, whereas trans effects often
represent aggregate of effects across multiple sites dispersed through the
genome and thus much harder to identify. (Yvert et al. 2003).

The first question one might ask about the architecture of gene expres-
sion variation is how much variation is found in cis and in trans? This has
been assessed in vivo using traditional genetics and a variety of novel molec-
ular biology tools. The first approach combines gene expression profiling
with genetic markers in F2 progenies to map linkages (expression QTL or
eQTL) of the transcription phenotypes. Cis-acting eQTLs are identified by
binning the genome in small regions (physical or genetic distance) and locat-
ing each eQTL relative to the gene being regulated. If they both fall in the
same bin, the eQTL is said to be cis-acting. Depending on the density of
markers used and the number of meiosis events analyzed, the size of the
bin may vary and thus limit the resolution of this approach. In the case of
the study conducted by Morley and colleagues (2004), these bins were five
megabases long. The effects of identified cis-regulatory variants can be con-
firmed by in vitro approaches such as transient transfection assays (e.g.,
Rockman and Wray 2002). This method has attracted much attention
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expression in natural populations. Large-scale gene expression profiling of
organisms as diverse as yeast, fruit flies, and humans provides an unequiv-
ocal result: heritable genetic variation for gene expression level is abundant
in nature (Table 5.3). 

Since gene expression levels represent multifactorial quantitative traits,
they can be studied using the tools and theoretical models developed by
quantitative genetics. A formal quantitative genetic study of mRNA abun-
dance thus requires a good understanding of its genetic architecture. The
genetic architecture of a trait refers to its characterization in terms of the
direct effects of genes and environment, as well as the genetic and envi-
ronmental interactions affecting the trait expression. The first aspect of the
genetic architecture of transcriptional variation is the contribution of cis-
and trans-acting genetic variation. Several factors have contributed to the
recent surge of interest in the distinction between cis and trans effects (e.g.,
Pastinen and Hudson 2004; Wittkopp et al. 2004; Landry et al. 2005). For
instance, genetic variation in cis-acting elements is thought to be less likely
to have pleiotropic effects than genetic variation in trans-acting molecules.
In contrast, a single transcription factor may regulate the expression level
of dozens of genes such that a mutation in it may affect many of its targets.
Furthermore, cis-regulatory variation is also of particular interest because
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Table 5.3 Some genomic studies reporting levels of polymorphism in gene expressiona

Number of genes
Number of genotypes Number of genes showing significant 

Organism and / or individuals assayed variation Reference Tissue Platform Statistics

Insects
Drosophila melanogaster 8 inbred strains ~5,000 218–928 between Meiklejohn et al. 2003 Whole flies, males cDNA Bagel

pairs of strains
Drosophila simulans 10 heterozygous strains ~8,000 1,136 (P < 0.05); Whole flies, males Affymetrix ANOVA

218 (P < 0.001)
Fungi

Saccharomyces cerevisiae 9 strains ~6,000, whole genome 241 (P < 0.01) Fay et al. 2004 Cells grown in rich medium Oligo array ANOVA
S. cerevisiae 4 strains ~6,000, whole genome Townsend et al. 2003 Cells grown in rich medium cDNA Bagel

Fish
Fundulus heteroclitus/F. grandis 10/5 individuals within populations ~1,000 ~161 (P < 0.01) Oleksiak et al. 2002 Heart cDNA ANOVA
Atlantic salmon 12 individuals Aubin-Horth et al. 2005

Mammals
Human 35 CEPH cell lines ~5,000 Cheung et al. 2003 Lymphoblastoid cells cDNA
Plants
Arabidopsis thaliana 5 accessions ~8,000 1525 (P < 0.01) Chen et al. 2005 Leaf tissue Affymetrix ANOVA

Worm
C. elegans 5 natural isolates ~5,500 118 (P < 0.01) Denver et al. 2005 Whole worms cDNA ANOVA

amRNA abundances are measured across genotypes raised on a controlled environment.



eQTLs that have the strongest effects tend to be cis-acting. For instance,
increasing the stringency for statistical significance of eQTL effects increases
the proportion of cis-acting eQTLs observed (e.g., Schadt et al. 2003). Finally,
there are clusters of eQTLs in trans that affect the expression of large num-
bers of genes—in other words, there are portions of chromosomes that affect
a larger number of genes than expected by chance alone. For instance, eight
such clusters were identified in a cross between two strains of yeast (Brem
et al. 2002). In the human lymphoblastoid cell lines studied by Morley and
colleagues (2004), two regions of five megabases each contained six or more
eQTLs out of the 142 most significant ones. 

Genotype-by-environment interactions,sex-biased genes,
and epistasis
Another important aspect of the genetic architecture of quantitative traits is
how alleles at different loci interact with each other. Given that gene expres-
sion regulation involves numerous molecular interactions, one might expect
epistasis for fitness (i.e., the contribution of nonadditive gene interactions
to fitness) to be an important factor in how selection acts on gene expres-
sion. Consider, for instance, the effect of a mutation in a cis-regulatory
sequence. If the effect of this mutation depends on the genetic background
(variation in trans, for example), we predict an epistatic interaction. 

Mathematical models of gene expression regulation have predicted that
epistasis will be an important factor contributing to gene expression varia-
tion (Gibson 1996, Landry et al. 2005). In their review of cis-regulatory vari-
ation in humans, Rockman and Wray (2002) identified many cases of cis-by-
trans interactions, where the effect of a cis variant depends on the genetic
background. They also identified cis-by-cis interactions, where the effect of
a cis variant depends on other cis-acting variants. Many interactions fell into
these two categories in recent large-scale studies of the genetic architecture
of the yeast, eucalyptus, and Drosophila transcriptomes (Brem et al. 2005;
Kirst et al. 2005; Landry et al. 2005). Finally, a survey of allelic expression
in interspecific hybrids of Drosophila reveals that many cis-by-trans inter-
actions have accumulated since the divergence between Drosophila
melanogaster and Drosophila simulans (Landry et al. 2005). Several of the
approximately 30 genes studied displayed a pattern consistent with cis-by-
trans interaction, which means that the divergence in gene expression
between the two species was smaller, or in the opposite direction, than the
divergence between alleles measured in the hybrid background. All these
studies have used crosses between closely related species to identify cis-by-
trans interactions, and it remains to be shown that the same interactions are
common contributors to epistatic genetic variation within species.

As mentioned above, genetic variation for gene expression is extensive
in nature, providing abundant raw material for evolution. Since this genetic
variation will be parsed by natural selection, any factor that influences this
variation will affect the course of evolution. Nongenetic sources of varia-

Evolution of  Genomic Expression 35

recently and has given rise to a field named “genetical genomics” (de Kon-
ing and Haley 2005) (Figure 5.8). 

Another approach relies on the fact that cis-acting variation is a property
of an allele of a gene. In an individual heterozygous for an exonic SNP (sin-
gle nucleotide polymorphism), cis-regulatory divergence can be estimated
by measuring the relative concentration of mRNAs containing the two alter-
native nucleotides, usually using genomic DNA as a control. Since the two
alleles and their cis-regulatory elements share the same pool of trans-act-
ing factors, unequal abundance of transcripts of the two alleles would sug-
gest the presence of genetic variation acting in cis. In cases where crosses
are performed between two inbred lines or closely related species, the diver-
gence in gene expression level between parental lines can be compared to
the difference between alleles in the F1 generation. Any difference between
the parental lines that is not assigned to cis divergence is then assigned to
divergence in trans. This approach was used in a study of hybrids between
Drosophila melanogaster and D. simulans, which showed that 28 of 29 genes
studied had divergent cis-regulatory elements (Wittkopp et al. 2004). 

The two approaches just described have been used to assess the relative
contribution of cis and trans factors in a variety of species. Because these
studies sampled different numbers of genotypes, used different numbers of
markers, and used different molecular techniques, it is difficult to compare
their results directly (e.g., de Koning and Haley 2005). However, the results
lead to some general conclusions. First, cis-acting eQTLs typically represent
a smaller proportion of the total (~30%) than trans-acting eQTLs. Second,
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evolutionarily, will therefore be important in deciphering the forces acting
on the regulation of gene expression. 

Gene Regulatory Networks, Subnetworks, and Modules
Gene regulatory networks are yet another level of organization of gene
expression and evolution. A network can be represented as a graph—a col-
lection of nodes connected by edges, interacting as a system (Barabasi and
Oltvai 2004). A subnetwork is a subset of the whole network. A module is a
coherent subnetwork whose structure and function is largely independent
of interactions with members of other subnetworks. These general concepts
have been fruitfully applied at many levels of the biological hierarchy, from
molecules to species. Usually, the nodes represent biological units (proteins,
cells, organs, individuals, and so forth), and the edges represent interactions
between them. For example, a trophic network depicts prey/predator rela-
tionships and the energy flow through a food web. The species are the nodes
and the edges are “who eats whom” interactions. At the other end of the
scale, a gene regulatory network describes the transcriptional and transla-
tional web and its regulation (by proteins, RNAs or environmental signals)
within a cell. In this case, the nodes are genes and the edges represent regu-
latory interactions between pairs of genes or a shared regulatory element.

Biological systems are complex and the information must often be simpli-
fied to gain useful insights. In the simplest case, networks are considered as
Boolean objects, represented by uniform nodes and connected by undirected
edges (for more complex models, see Proulx et al. 2005). Boolean nodes have
only two discrete states, on or off, and the nodes interact through logical or
Boolean functions. In this modeling framework, only the topology of the net-
work is retained. Even with these simplifications, network behaviors are still
extremely rich. A straightforward and well-established indicator of network
topology is the distribution of the connectivity (the number of edges of a par-
ticular node). A second indicator is the clustering coefficient, which meas-
ures the degree of connection between nodes connected to the same spe-
cific node. Nodes densely connected to each other define clusters, or modules.
In a gene regulatory network, the connectivity and the modularity provide
direct insights about important concepts in evolutionary biology, like epis-
tasis, canalization, and plasticity. Wagner (1996) modeled the evolution of
transcriptional regulatory networks and concluded that more densely con-
nected networks are more insensitive to disruption by mutations.

Much excitement has been generated by high-throughput experimental
techniques such as genome-wide expression profiling and location analy-
sis (ChIP-on-chip) because these techniques promise to allow for rapid
reconstruction of regulatory networks. Large-scale gene perturbation exper-
iments generate valuable information about the number of genes whose
expression is affected by an environmental or a gene perturbation (muta-
tion, overexpression or knockout). Regrettably, such perturbation experi-
ments cannot distinguish direct from indirect interactions. On the other
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tion in gene expression, such as the environment or development, may also
contribute to modification of gene expression. Most importantly, these effects
may interact with the genotypes to shape the amount of genetic variation
observed. Surveys have revealed that genetic variation in gene expression
can be dependent on the sex (genotype-by-sex interaction), the environment
(genotype-by-environment interaction, or genetic variation for phenotypic
plasticity), and developmental stage (age-by-genotype interaction). For
instance, genetic variation among strains of D. melanogaster is dependent on
the sex in which it is measured; some genes that display genetic variation
in gene expression in males may not be variable in females (Jin et al. 2001).
If an eQTL experiment were performed for those genes that show genotype-
by-sex interaction, different numbers and locations of eQTLs would be iden-
tified in each sex. Similarly, Landry and colleagues (2006) showed that
genetic variation in gene expression among strains of Saccharomyces cere-
visiae depends on the environment in which it is measured and that sub-
stantial genotype-by-environment interactions are evident (Figure 5.9).
Understanding how these interactions are maintained, mechanistically and
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Figure 5.9 Plasticity and genotype-by-environment interaction in gene expression.
The expression levels of two genes, prm8 and crh1, were measured in six different
yeast strains grown in four different environments. Prm8 (top graph) shows
genetic variation for gene expression, but the six strains show the same gene
expression differences across growth conditions and, therefore, no genotype-by-
environment interaction. Crh1 (bottom graph) shows genotype-by-environment
interaction, in that gene expression in the six strains responds differently to differ-
ent environments (e.g., compare NS4 to NS24). YPD, SWM, NS4, and NS24 are
different growth media. (Data from Landry et al. 2006.)
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hand, protein–DNA interaction data are produced at a slower rate, but
directly identify the binding sites of transcriptional factors. Accordingly, Lee
and coworkers (2002) performed a genome-wide analysis to determine the
binding distribution of 106 known regulatory proteins along the yeast
genome. The results suggest that about ten percent of these regulatory genes
are autoregulated. This proportion seems substantially smaller than in E.
coli, where most genes (52% to 74%) are autoregulated (Shen-Orr et al. 2002).
Also, about 37 percent of the yeast regulators are involved in feed-forward
loop motifs; these contain a regulator controlling a second regulator that
acts together with the first one to bind a common target gene. In E. coli, this
type of motif was found to control about 240 genes.

In another approach, Stuart and colleagues (2003) and Bergmann and col-
leagues (2004) used published perturbation experiments to compare the net-
work topologies of evolutionarily distant organisms such as A. thaliana, C. ele-
gans, D. melanogaster, E. coli, H. sapiens, and S. cerevisiae. They found that, for
all these organisms, the connectivity is distributed as a power law, with neg-
ative exponents of similar magnitudes. These power law connectivity distri-
butions indicate that most genes have few connections while a few genes have
many connections. Moreover, there is a significant enrichment of highly con-
nected genes as compared to random networks. Power law distributions have
been attributed to dynamically evolving networks and to systems that are
optimized to provide robust performance in uncertain environments. For gene
networks, gene duplication could be the proximal mechanism explaining this
enrichment of connected genes (Teichmann and Babu 2004). They also found
that expression networks are highly clustered. In yeast, the network comprises
from 5 to 100 independent gene modules, depending on the analysis meth-
ods and an arbitrarily defined threshold. However, modules and interactions
may vary significantly between organisms. 

Conclusions
Clearly, there are myriad regulatory interactions and mechanisms that play
a role specifying the location, timing, and level of gene expression. This pro-
vides a rich stage where hypotheses can be clearly stated and the variables
of evolutionary genetics (epistasis, pleiotropy, plasticity, and so forth) can
be more concretely defined. Also, the impact of a number of attributes on
variation in genomic expression can be assessed. Accordingly, investigators
have described many determinants of variation in genomic expression
within and between species, including membership in functional classes,
pattern of sex and tissue biases, properties of the protein–protein interac-
tion network, protein attributes, and mRNA abundance itself. Also being
disentangled are the effects of mutations and selection on levels of gene
expression polymorphism and divergence. Interpreting data integrated from
disparate sources is likely to remain a key challenge to understanding the
overall picture of the regulation and evolution of genomic expression. 
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