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Microsatellites abound in most organisms and have proven useful for a range of genetic and genomic studies. Once primers have
been created, they can be applied to populations or taxa that have diverged from the source taxon. We use PCR amplification,
in a 96-well format, to determine the presence and absence of 46 microsatellite loci in 13 cichlid species. At least one primer
set amplified a product in each species tested, and some products were present in nearly all species. These results are compared
to the known phylogenetic relationships among cichlids. While we do not address intraspecies variation, our results present a
phylogenetic index for the success of microsatellite PCR primer product amplification, thus providing information regarding a
collection of primers that are applicable to wide range of species. Through the use of such a uniform primer panel, the potential
impact for cross species would be increased.

1. Introduction

Microsatellites, or short sequence repeats (SSRs), are short
(2–6 bp) DNA motifs that are repeated at least three, and
up to hundreds of, times consecutively [1]. SSRs abound
in most organisms, and fishes are no exception, with an
estimated frequency of one locus per several kb of DNA [2].
The repetition of a microsatellite motif makes misalignment
of template and newly synthesized strands during DNA
replication very likely, resulting in a range of alleles differing
by whole numbers of repeats [3]. Such unstable mutation
dynamics hamper sequence-dependent function of a locus,
so with few exceptions, such as the human Huntington’s
locus, observed microsatellite regions are not transcribed. As
primarily neutral, polymorphic loci with a signature pattern
that facilitates isolation, microsatellites have proven useful
for a range of genomic studies.

Despite broad utility, a researcher interested in applying
microsatellite-based tools to linkage mapping or phyloge-
netic analysis faces a significant investment in time and
material to isolate repeat regions and create primers that
anneal with the microsatellite flanking regions (MFRs)
adjacent to the repeats. Their proximity to microsatellites

makes MFRs likely to be selectively neutral, to the point
that their sequence can be used as a molecular clock for
phylogeny studies [4]. Since MFR-derived primer pairs do
not anneal to repeat regions, this disruption does not
interfere with these primers’ efficacy. Once MFR primers
have been created, therefore, depending on genome-wide
mutation dynamics, they can likely be applied to populations
or taxa that have diverged from the source taxon. For
example, Rico et al. [5] were able to amplify a microsatellite
region with the same MFR-derived primer set in two fish
species that diverged 470 Mya. However, the pattern of
MFR sequence conservation was sufficiently unpredictable to
require locus-by-locus confirmation. If, at the outset of work
on one taxonomic group, MFR primers are available from
previous work on a related group, some expense still must
be undertaken to determine which microsatellites are present
and informative (i.e., variable) in the particular genomes and
populations of interest [6, 7]. The current study presents an
index of putative MFR-specific primer sets tested in species
representing the major groups within the most speciose
family of fish (the Cichlidae). This information should
reduce the entrance cost to those interested in applying
microsatellite-based analyses to additional cichlid species.
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The cichlids of the Great Rift Lakes of Eastern Africa
are especially important as research model of evolu-
tionary processes because their phylogenetic history has
been reconstructed to reveal multiple adaptive radiations;
many are recent (<2 Mya) and some exceptionally recent
(<12.500 ya). This has resulted in extensive diversification,
often exhibiting convergence of form, niche, and behav-
ior [8]. The presence of many closely related species,
often sympatric and quite subtly diverged [9], enables
an appropriately subtle analysis of speciation genomics
and genetic basis for adaptive traits. For example, jaw
morphology-related genes have been studied in Malawi
cichlids [10], and population structure has been addressed
in the Tanganyika rock cichlid species [11] as well as for the
sympatrically speciating Midas cichlids from South America
[12].

The most intensively studied cichlids are the widely
farmed, multigeneric tilapia species, in one of which,
Oreochromis niloticus, Lee and Kocher have developed
microsatellite isolation methods used to create several
hundred sets of MFR-specific primers [13], in addition to
creating a linkage map of those loci [14]. Albertson et al.
also isolated microsatellites and created a linkage map for a
hybrid of Labeotropheus fuelleborni and Metriaclima zebra,
two closely related species of Mbuna or rock cichlid from
Lake Malawi. In the creation of the Mbuna linkage map, 248
of the primer sets obtained from O. niloticus were also tested,
and 46 were found to produce product in the Mbuna hybrid
[10]. These 46 loci represent all but three of the O. niloticus
linkage groups from the available genetic map [14], with as
many as four loci for linkage groups 3, 10, and 17. As O.
niloticus and the Mbuna species share a common ancestor
with most of the Great Lakes cichlids approximately 18–
30 Mya (Figure 1(a)) [15], the 46 loci found in both species
bore significant chances of being present in other African
cichlids. This current study creates a phylogenetic index for
a wide range of cichlid species indicating the presence and
absence of PCR product using primers to these loci. Such an
index is anticipated to aid cichlid researchers. The 46 primer
sets were tested on a single genomic DNA samples extracted
from each of 13 cichlid species: Astatotilapia burtoni, Neo-
lamprologus brichardi, Perissodus microlepis, Protomelas sim-
ilis, Metriaclima estherae, Tylochromis sp., Tropheus duboisi,
Xenotilapia flavipinnis, Xenotilapia ochrogenys, Retroculus
xinguensis, Cichla temensis, Astronotus sp., and Satanoperca
sp. This sample covers most of the major African clades
and some South American clades. No cichlids from Indian
or Madagascan were examined. At least one primer set
amplified a product in each species tested, and some PCR
primer sets successfully amplified a product in nearly all test
species.

2. Materials and Methods

Fin clips were collected in the field and placed immediately
in ethanol. Genomic DNA was extracted from each indi-
vidual using a standard proteinase K/Phenol protocol. PCR
was performed using the standard FastStart Taq protocol
in 10 µL reactions, with 2.5 µM MgCl2, .25 mM Forward

and Reverse primers, and .5 ng template DNA, using the
following program: 30 cycles; 30 s at 95◦C, 30 s at 56◦C,
1 m at 72◦C. Alternate reaction conditions were not tested
as it is our goal to identify, for use by other researchers,
those primer sets that are likely to be most amenable to
multiplexing and high-throughput analysis. PCR products
were run on 4% agarose gel stained with ethidium bromide.
Digital gel images were captured for analysis. Band presence,
relative brightness, approximate length, and the presence
or absence of a doublet (two distinct bands suggesting
heterozygous state or multiple loci) were assessed by eye.
Failed reactions were repeated for confirmation of negative
results.

Clustering of species according to the pattern of success-
ful PCR products was performed using R software v2.0.1
[16]. The dissimilarity measures were obtained using the dist
function in the stats package based on Euclidean distance
using product presence and absence information only. The
consensus tree and bootstrap confidence values for each
node were obtained with the consensus function in the
MAANOVA package [17]. The consensus tree dendrogram
and confidence values were calculated as the proportion of
1000 trees that agreed with the original tree as obtained by
resampling with replacement, again using presence-absence
data only.

3. Results

In total, 13 species were assayed including 9 from Africa and
4 from South America. In general, the number and pattern
of successful amplification products reflect phylogenetic
relationship (Figure 1). Among 9 African cichlid species, 2
are endemic to Lake Malawi and 7 to Lake Tanganyika. The
mean number of positive amplifications per species (out
of 46) was 33.5 (s.d. ± 3.5) for Lake Malawi and 35.67
(s.d. ± 4.03) for Lake Tanganyika. T. polylepis is excluded
from this average calculation due to its recent immigrant
status and distant relationship to other Tanganyikan cichlids
[15, 18]. The 14 positive amplifications from T. polylepis
were the least of any African species, but still more than any
of the South American cichlids. The two species from the
Ectodini tribe showed the most similar pattern of microsatel-
lite amplification products, six primer sets amplified in
X. flavipinnis and not X. ochrogenys, but there were no
other differences in their amplification patterns. As expected,
the more distantly related South American cichlid species
showed significantly fewer successful microsatellite products.
On average, 4.5 (s.d. ± 2.06) primers sets amplified in these
species, and each species tested had a unique pattern of
positive amplifications.

Clustering analysis resulted in a dendrogram that
separated the African Great Lakes cichlids from their
sister genus, Tylochromis, and from the South Ameri-
can species. There was insufficient statistical confidence
to distinguish relationships within the Great Lakes and
accurately capture relationships among the South Amer-
ican clades (Figure 1). These results agree, as far as res-
olution allows, with the mtDNA phylogeny studies [19,
20].
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Figure 1: Successful PCR amplification with microsatellite primers in 13 cichlid species using primers designed to Tilapia. Color indicates
relative intensity of the PCR band black: brightest, dark grey: visible, light grey: faint, white: absent. Definitive doublets are indicated with
an asterisk. The dendrogram represents the consensus cluster confidence values indicated based upon 1000 trees, with resampling, using
presence or absence of product and Euclidean distance measures.
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4. Discussion

The data presented here demonstrate that the previously
isolated MFR primer sets should be useful for population
studies in many cichlid taxa, particularly throughout the East
African radiation. While the range of species used in this
study cannot definitively predict which primer sets will yield
informative (i.e., variable) genetic information for every
cichlid species, it does provide a measure of the expected
success rate for a given phylogenetic position. Furthermore,
the availability of this primer set in a 96-well format will
facilitate rapid screening for any species of interest.

The band brightness aspect of the data may estimate
sequence divergence in these MFR’s. It is possible that highly
diverged loci will not amplify as efficiently, and further
divergence would prohibit amplification all together; this
should be anticipated when a distantly related (e.g., South
American) species is studied. As Ellegren [3] made clear,
mutation rates vary between loci, individuals, and taxa, due
to disabled mismatch repair and proofreading, chromatin
structure variation, or other mechanisms. Therefore, we
cannot infer sequence similarity by a measure of band
brightness, and this information provides only a rough
guideline. Similarly, an allele of a given length may have
arisen from either a lengthening or from a shortening
mutation, meaning that its exact relationship to other
alleles is unclear. In addition, as with absolute mutation
rates, the relative frequencies of shortening and lengthening
vary within genomes and taxa. Therefore, estimating a
given allele’s ancestry requires considerable groundwork
to describe the variation at that locus for any species of
interest. For research over a fairly short scale of divergence,
where novel alleles are at a minimum, this groundwork
will require amplification from several individuals’ genomic
DNA to estimate whether enough polymorphism exists to
allow for distinction between lineages. Here, (Figure 1) we do
report all observed variation in relative brightness (denoted
by shading) of the imaged PCR products as well as the
presence or absence of a doublet (denoted by the asterisk) in
order to provide all possible information regarding potential
polymorphism of each locus. However, it must be noted that
only a single individual was assayed in the current study and
resolution was ∼20 bp or greater. Therefore, further work
is required to describe polymorphic loci in any particular
species of interest. We have not conducted such intraspecific
analysis in this study because demonstration of variation and
utility of the loci as genetic markers must be established for
the exact species and population of interest and could not be
inferred across species boundaries.

By contacting the corresponding author, the full set of
46 primes used in this study is freely available in a 96-well
format and diluted to a working concentration for use in
PCR with any species of interest.
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