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Microarrays are used to measure simultaneously the
amount of mRNAs transcribed from many genes. They
were originally designed for gene expression profiling in
relatively simple biological systems, such as cell lines and
model systems under constant laboratory conditions.
This poses a challenge to ecologists who increasingly
want to use microarrays to unravel the genetic mechan-
isms underlying complex interactions among organisms
and between organisms and their environment. Here, we
discuss typical experimental andstatistical problems that
arisewhen analyzing genome-wide expression profiles in
an ecological context.We show that experimental design
and environmental confounders greatly influence the
identification of candidate genes in ecological microarray
studies, and that following several simple recommen-
dations could facilitate the analysis of microarray data
in ecological settings.

Microarrays in a variable environment
The use of gene expression microarrays (see Glossary) in
ecology has increased rapidly over the past few years. They
have been applied with the aim of understanding the
genetic mechanisms that underlie species interactions,
adaptation and the outcomes of evolutionary processes.
Most of these studies were performed under laboratory or
carefully controlled conditions (Table 1) using model
species such as the fruit flyDrosophila melanogaster, thale
cress Arabidopsis thaliana and baker’s yeast Saccharo-
myces cerevisiae, which are well suited to laboratory exper-
imentation and have fully sequenced genomes [1–3].
However, because model species have relatively simple
life cycles and are opportunistic generalists, which limits
their potential for ecological research, the number of field
studies with non-model species is increasing.

However, detection of subtle gene effects in field studies
might be hampered owing to large environmental variation.
Therefore, microarray field experiments have focused
mainly on differential gene expression associated with rela-
tively large and discrete effects, such as dwarfism in fish [4],
parasitisminbirds [5,6] rearing conditions in salmon [7] and
behavioral transitions in bees [8]. Yet, minimizing environ-
mental variation has its limits because ecologists are inter-
ested in the interactions among organisms and between
organisms and environmental heterogeneity. Here, we
address the experimental and statistical caveats involved

in linking high-throughput gene expression profiling using
microarrays to ecological questions. Specific attention is
paid to interpreting the results from ecological microarray
studies.

Sources of variation
The analysis of microarray data is faced with many
confounding factors. Whitehead and Crawford [9] mention
three levels of variation: technical variation, variation
among individuals, and variation between taxa. In addition,
microarray analyses suffer from technical variation among
platforms and laboratories [10]. Gene transcript abundance
is also sensitive to a range of internal and external environ-
mental variables, as illustrated for D. melanogaster by
Carsten et al. [11], who showed that a simple dietary shift
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Glossary

Anonymous array: a microarray in which the sequence of each probe is not
known in advance. Only probes that show interesting expression changes in a
particular experiment are sequenced. This strategy is particularly useful for
species for which no genome data are available. Depending on the organism,
anonymous probes can be derived from genomic DNA fragments or from
libraries of mRNA (cDNA microarray).
cDNA microarray: a microarray in which probes are derived from expressed
sequences by reverse transcribing mRNA. Probes are long (up to several
hundred base pairs) and non-uniform, which can reduce the quality of signals
compared with oligo microarrays.
Dedicated array: a microarray spotted with DNA probes of genes that are
known to be involved in a particular pathway or underlie a specific phenotype
(e.g. plant–herbivore interactions).
Effective population size: the number of breeding individuals in an idealized
population that would show the same amount of random genetic drift and
inbreeding as the population under study. This is usually smaller than the
absolute population size.
Gene regulatory sequence: a DNA sequence that is responsible for regulating
gene expression.
Microarray: a thumbnail-size sheet of glass or silicon on which thousands of
single-stranded DNA probes are spotted. These sequences are complementary
to pieces of genes of a particular biological species. When an mRNA sample
from the same species is labeled with a fluorescent dye and applied to
the array, it binds (i.e. hybridizes) to those probes that contain matching DNA.
The arrays are then scanned and the amount of mRNA quantified. The
fluorescent signal corresponds to the gene expression levels in the original
sample and shows which genes are ‘turned on’.
Northern blotting: a method of RNA detection and identification in which the
intact RNA is separated by size, transferred (blotted) onto nitrocellulose or
nylon paper, and then hybridized with labeled DNA probes.
Oligo microarray: a microarray that uses probes comprising synthesized pieces
of DNA of uniform length (! 40–80 base pairs). This can lead to more
comparable signals than acquired using cDNA microarrays, but the technique
is usually only used for organisms with completely sequenced genomes.
qRT-PCR: a technique that is used in combination with reverse-transcription
PCR to quantify small amounts of mRNA in a sample. It is a popular method for
validating microarray results for single genes.
Transcriptomics: the comprehensive measurement of mRNA levels (gene
expression) in a particular biological sample, usually using microarrays.Corresponding author: Kammenga, J.E. (Jan.Kammenga@wur.nl).
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from cornmeal to banana for 24 hours was sufficient to
trigger differential expression for 90 genes, which is nearly
2% of all genes on the microarray. Even in inbred mice,
reared under highly controlled, pathogen-free laboratory
conditions and matched for age and sex, significant inter-
individual variation in gene expression was observed [12].
Only after controlling for additional variables such as social
status, stress and food intake was the variation reduced.
Comparable results were reported for the yeast transcrip-
tome [13], where 4% of genes were differentially expressed
between cultures of isogenic lines grown under identical
laboratory conditions.

These variations showed consistent and biologically
meaningful correlation patterns between groups of genes,
indicating that they are not the result of technical noise
but are instead caused by uncontrolled environmental
factors. Even expression patterns that are highly con-
strained by evolution can be sensitive to environmental
and physiological conditions. Ribosomal genes provide a
striking example of precisely controlled protein synthesis,
where unfavorable, or even slightly stressful conditions,
lead to a rapid shutdown. Examples of this were reported
for yeast following a metabolic shift from fermentation to
respiration [14], nocturnal leaf growth in poplar [15], cold
adaptation in catfish [16] and ultraviolet radiation acclim-
ation in maize [17]. Thus, when microarrays are used to

unravel the ecological complexity in field conditions,
environmental variation can make the results difficult
to interpret.

Stabilizing selection and neutral genetic drift
One of the implicit assumptions of ecological microarray
studies is that expression levels are subject to evolutionary
pressure and that intertaxa differences in expression are
due toadaptation todifferent environments.Whiteheadand
Crawford [18] analyzed the expression ofmetabolic genes in
populations of the fishFundulus heteroclitus and found that
many genes have expression patterns that cannot be
explained by drift and show evidence for being under
natural selection. This agrees with earlier conclusions that
gene expression variation is largely determined by natural
selection within and among species [19]. Changes in gene
regulatory sequences can have large effects on gene expres-
sion. Wray et al. [20] reviewed the evolution of gene expres-
sion regulation in eukaryotes and reported an extensive
genetic variation in regulatory sequences, some of which
could be attributed to selection. Based on ameta-analysis of
gene expression studies, Gilad et al. [21] concluded that
stabilizing selection is the dominant mode of gene expres-
sion evolution in multicellular model organisms. Despite
this, they detected evidence for directional selection in
their work on primate gene expression, which lead to

Table 1. Examples of studies using gene expression microarrays in an ecological context
Species Array type Subject Cross-species

array
Technical
confirmation

Field/lab Refs

Mycorrhizal fungus Paxillus
involutus

cDNA microarray Evolution of gene expression No No Lab [52]
Host specificity No No Lab [53]

Baker’s yeast Saccharomyces
cerevisiae

cDNA microarray Genetic variation in gene expression No No Lab [54]
Adaptive evolution No No Lab [55]

Black cottonwood Populus
trichocarpa

cDNA microarray Plant defense No RT-PCR Semi-field [6]

Thale cress Arabidopsis spp. cDNA microarray Plant defense responses No No Lab [56]
Oligo microarray Adaptation, zinc accumulation Yes Yes Lab [57]

Abiotic stress response No No Lab [58]
Genetic variation of gene expression No RT-PCR Lab [48]

Sunflower Helianthus spp. EST-anonymous Habitat divergence Yes RT-PCR Lab [36]
Ragwort Senecio spp. cDNA microarray Hybrid speciation Yes RT-PCR Lab [59]
Tobacco Nicotiana attenuata Dedicated cDNA

microarray
Species interaction No No Lab [60]

Dedicated cDNA
array

Species interactions No No Lab [61]
Plant defense responses No No Lab [31]

Black nightshade Solanum
nigrum

Oligo microarray Species interaction No RT-PCR, RNA
blot analysis

Lab [62]

Fruit fly Drosophila
melanogaster

cDNA microarray,
EST

Diet effects No No Lab [11]

Oligo microarray Species interactions No No Lab [63]
Genome arrays Life-history tradeoffs No No Lab [29]

Body size No No Lab [64]
Honey bee Apis mellifera cDNA microarray Behavior No RT-PCR Field [8]

Pheromone responses No RT-PCR Lab [65]
Annual killifish Austrofundulus
limnaeus

Whole-genome
cDNA array

Temperature acclimation No No Lab [66]

Lake whitefish Coregonus
clupeaformis

cDNA microarray Parallel transcription among ecotypes Yes No Field [4]

Mummychog Fundulus
heteroclitus

cDNA microarray Variation in cardiac gene expression No No Lab [67]
Variation in tissue-specific gene
expression

No No Lab [68]

Salmon Salmo salar cDNA microarray Gene x environment interactions Yes No Field [7]
House finch Carpodacus
mexicanus

cDNA macroarray Parasite-induced gene expression No Northern blot
hybridization

Semi-field [5]
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human-specific increases in the expression of several
transcription factors [22].

However, gene expression might not always be
constrained by stabilizing selection alone. Neutral genetic
drift can also lead to divergence of gene expression pat-
terns among taxa, making it difficult to distinguish adap-
tive changes from drift. Wagner [23] showed that increases
in mRNA in yeast are also constrained through the energy
costs that they incur. Given that yeast have huge effective
population sizes (>>1000 individuals), it is predicted that
a change in mRNA levels of more than 10% will lead to a
decrease in fitness that is sufficient for such a mutation to
be effectively removed by purifying selection; thus, these
changes inmRNAwill not be evolutionarily neutral [23]. In
higher organisms, particularly vertebrates, energetic con-
straints on gene expression might be of minor evolutionary
importance because other components of fitness, such as
behavior, dominate [23]. In these organisms, which are the
focus of most evolutionary microarray studies, larger fit-
ness effects would be required to prevent the fixation of
deleterious changes in gene expression. Indeed,Whitehead
and Crawford [18] found that a large part of the expression
variation could be explained by neutral drift.

It has been suggested that focusing on changes in the
mechanisms controlling the global expression profile will
reduce the chance of measuring gene expression differ-
ences that result from neutral drift. For instance, Rifkin
et al. [24] reported that the expression of transcription
factor (regulatory) genes were less prone to neutral drift
than were their downstream targets. Shiu and Borevitz
[25] also advocated describing regulatory networks on a
genome-wide scale.

Interpreting differential gene expression
There are several technical issues affecting the
experimental design of microarray studies in general,
and ecological microarray studies in particular. These
include the multiple testing problem, caused by the large
number of hypotheses tested in parallel; the problem of
obtaining a sufficient number of appropriate biological
replicates; and the importance of choosing the correct time
points for sampling.

Multiple testing problem
The sheer number ofmeasured genes inmicroarray studies
poses important statistical challenges. When testing
whether a particular condition, such as temperature or
the presence of parasites, has a significant effect on the
expression of a single gene, the associated p-value refers
only to a single statistical test. However, when testing
thousands of genes simultaneously, there is a strong like-
lihood that some of them will show ‘significant’ p-values
just by chance. This problem is not unique to ecological
applications of microarrays. Several approaches for con-
trolling the multiple testing problems have been proposed,
the most common of which in microarray analysis is the
control of the False Discovery Rate (FDR), introduced by
Benjamini and Hochberg [26]. This approach is powerful
enough to detect significant effects in multiple testing
situations such as microarrays, and is relatively easy to
calculate. Other approaches are discussed in Refs [27,28].

Multiple-testing issues can arise in unexpected forms in
ecological microarray studies. For example, Bochdanovits
and de Jong [29] analyzed a microarray data set
(1670 genes) of differentially expressed genes underlying
a tradeoff between pre-adult survival and male weight in
D. melanogaster. At the center of their technique is the
evaluation of correlations between gene expression and
the two traits. It was argued that it is unlikely that the
expression of a gene is simultaneously strongly positively
correlated to one trait and strongly negatively correlated to
the other trait by chance. Based on this, it was estimated
that the fraction of genes that simultaneously occupy
the opposite 3.5% tails of the two correlation coefficient
distributions is p = 0.035*0.035*2 = 0.0024. This would
correspond to an expected number of false positives of
E = p*1670 = 4.0. However, pre-adult survival and male
weight were negatively correlated. When this is taken into
account, the expected number of false positives is higher,
!31.6 genes per experiment. In this case, the detection of
34 differentially expressed genes, as reported in Ref. [29],
corresponds to an expected false discovery rate of
FDR = 31.6/34 = 92.9%.

Biological replication
Differential expression estimates also depend on the
ability to obtain sufficient independent mRNA replicates
fromwild populations. Using only technical replication (i.e.
repeating the measurements on the same mRNA sample
multiple times) can lead to inflated estimates of statistical
significance. Hybridizing single samples sufficiently often
will necessarily detect statistically significant differences.
The calculated p-values will be uninformative in this case.
Because p-value calculation is based on the assumption
that independent measurements are used, the values are
just arbitrary numbers derived from pseudo-replicated
data. The results do not provide insight into the causal
relationships of differential gene expression. This is
important under field conditions, where many unknown
factors can affect expression levels. For example, the pre-
cise physiological state of the organism at the moment that
the sample was collected might vary. Perhaps one of
the sampled organisms was well fed, whereas the next
sample came fromahungry individual. Another factor could
be whether there was any rank in the social hierarchy
among individuals. Thus, because gene expression is so
sensitive to environmental conditions, animals and plants
from field studies should be kept under well-controlled,
homogenous laboratory conditions before sampling [30].

Temporal dynamics of gene expression
In addition to environmental and random variation,
another confounding problem is the temporal dynamics
of gene expression. With some genes only being transiently
expressed, one might fail to detect any differences because
the timing of measurement is ‘wrong’. This became clear in
some of the differential expression studies by Voelckel and
Baldwin [31]. The authors tried to determine whether
plants can distinguish between attacks from insects of
different feeding guilds. Indeed, sap-feeding mirids Tupio-
coris notatus and chewing hornworms Manduca sexta eli-
cited different gene expression profiles after an attack that
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lasted for 24 h. Yet, after five days, these initial differences
had largely subsided and the expression resembled that of
plants deserted by the insects [31]. It might therefore be
necessary to analyze several time points or developmental
stages before reaching a conclusion.

Higher-level analysis
A common approach to analyzing ecological data is the
analysis of variance (ANOVA), or its extensions in the form
of mixed models. These techniques are straightforward to
apply to gene expression experiments (for extensive didac-
tical discussion see Refs [32,33]). A typical model might
describe the expression value, y, of a single gene as

y ¼ mþGþ Eþ Tþe;

where m is the average expression level, G contains expres-
sion differences explained by genetic factors (different lines
or populations), E summarizes environmental factors
(which can include different tissues), T stands for various
kinds on technical factors (e.g. spot, array or batch effects),
and e is the residual variation that is not explained by
these other factors.

In an ecological microarray experiment, the term of
interest will often be some kind of G$E interaction [e.g.
a difference between two populations (G) in their gene
expression response to temperature changes (E)]. A recent
study applied this approach to expression data from a
genetic cross between Caenorhabditis elegans lines from
Bristol and Hawaii, reared at different temperatures, and
identified a large number of genes that show differences in
gene expression plasticity (G$E interaction) in the two
genetic backgrounds [34].

Although incorporating interactions among multiple
factors in the ANOVAmodel is possible, the interpretation
of interaction coefficients at the level of thousands of
transcripts is challenging. As an alternative, gene expres-
sion responses can be analyzed in the form of Venn dia-
grams [35], which illustrate how many genes are affected
in condition A and condition B, and how many of these
overlap (Figure 1). In this case, the influence of each factor
is analyzed separately, for example using a t-test, and
interaction between them is inferred only indirectly. Sev-
eral Venn diagrams might be necessary to describe the
results for up- and downregulated genes, as well as various
combinations of these [31,36]. Yet, the necessity to use a
fixed threshold for deciding which genes to include in the
presented gene sets makes this approach arbitrary.

Breitling et al. [37] have introduced a new generalization
of the Venn diagram approach, vector analysis, which com-
bines intuitive visualization with a statistical evaluation
that helps to detect significant patterns of expression
responses in different backgrounds (genetic or environmen-
tal) (Figure 2). Such binary visualizations of response differ-
ence are a natural way of comparing dynamic expression
patterns, and vector analysis provides a statistical basis
that makes their interpretation more reliable [37]. This
approach has been used, for instance, to compare sex-biased
gene expression in two species ofXenopus, which have a ZW
sex determination system [38]. Using the vector analysis
statistics, the authors showed a significant excess of male-
biased compared with female-biased genes in both species.

Genetical genomics
A more advanced and promising concept of microarrays in
ecology involves the detection of genomic loci that underlie
variation ingeneexpression.Thisapproach, calledgenetical
genomics [39], uses microarray data from each individual of
a pedigree or experimental cross as a quantitative trait to
identify quantitative trait loci (QTL) that influence the
expression of genes. Although genetical genomics has
already been applied successfully in medical, animal and
plant sciences, for instance in studies of tissue specific gene
regulation inmice [40–42] and during shoot development in
Arabidopsis [43], its application to ecology is relatively new.
Recently, Street et al. [44] used genetical genomics to study
the genetics of adaptation to drought in the poplar Populus.
Using two parental strains with contrasting responses to
drought, this study provided candidates for genes respon-
sible fornatural variation indroughtadaptation.This result
could not have been achieved using a common microarray
approach where only the two parents are analyzed for gene
expression. Li et al. [34] showed strong genetic variation of
differential expression responses to temperature changes in
C. elegans and demonstrated the potential of genetical
genomics for mapping the molecular determinants of phe-
notypic plasticity.Although thefield of genetical genomics is

Figure 1. Classical Venn diagram approach to a herbivore attack study. (a) This
method compares the set of responsive genes in two experimental backgrounds A
and B (genetic or environmental). The assignment of genes to the responsive
group is usually based on some arbitrary statistical threshold (e.g. a certain
significance level or minimum fold-change, which is a measure of the magnitude
of a differentially expressed gene). This assignment can be derived for each
background independently and does not require a multifactorial analysis. (b) An
example of Venn diagrams applied to an ecological microarray study of herbivore
attack on native tobacco Nicotiana attenuata [31]. The number of genes that
downregulate expression in response to attack by the larvae of three different
moth species (Manduca sexta, Heliothis virescens and Spodoptera exigua) is
shown. There is a large overlap in genes between plants attacked by generalist
larvae (Heliothis and Spodoptera; 23 genes), compared with plants attacked by the
specialist Manduca (four in each case). Detection of significant patterns of gene
expression is facilitated using vector analysis (Figure 2).
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still in its infancy, it is envisaged that it will contribute to
important discoveries with regard to the genetics of evol-
utionary trajectories [45].

Confirming microarray data
Because microarray technology is still rapidly developing
and many different platform types are used (each with

inherent limitations and biases), confirmation experiments
are indispensable [46].Typically,Northernblotting orquan-
titative real-time PCR (qRT-PCR) are applied to confirm
observed expression patterns. Taken literally and applied to
all genes, such approaches would sacrifice the two main
advantages ofmicroarrays; their rapidity and their genome-
wide scope.

Figure 2. The principle of vector analysis. (a) The change in expression of a gene in the two experimental backgrounds is represented by a vector. The two axes correspond
to the log-fold changes in the two backgrounds. For example, gene 1 is strongly upregulated in both backgrounds, whereas gene 2 is specifically downregulated in
background A, but has lost this response in background B. (b) The plane can be systematically subdivided into sectors corresponding to the main behavior types that are
possible. In the centre, genes show little, if any, response in either background (white). Other genes respond at similar levels in both backgrounds (blue), are specifically
changed in only one background (yellow), or are regulated in opposite directions in background A and B (red). (c) Overlaying the vector analysis scheme on gene expression
responses in native tobacco Nicotiana attenuata, 24 hours after attack by two different herbivore species shows that most genes are either unchanged or show the same
response to both attackers (blue sectors). A few genes are specific for one insect species (yellow) and a few show opposite responses (red). The circular shape of the original
diagram (b) is transformed into an ellipse, as the axes of the original figure in [69] are not equally scaled. A full vector analysis would assign significance p-values to these
classifications. (c) reproduced, with permission, from Ref. [69]. To keep the image simple, a few genes in the upper left and lower right quadrants were not included.

Box 1. Biological replication and technical confirmation: a case study

Whitfield et al. [8] studied the brain transcriptome underlying
individual transitional behavior (nursing or foraging) in the honey
bee Apis mellifera (Figure I; reproduced with permission from Hans
Smid) under field conditions. Their study illustrates the complex
interplay of factors that affect ecological array studies and the designs
that can deal with this complexity. The following levels of potential
confounding factors were controlled:
% Environment: bees were collected from two different host

colonies. As behavioral transitions are adjusted to the needs of
the hive, this is a crucial factor that could influence observed
expression patterns.

% Genetic background: full sisters (75% related owing to haplodiploi-
dy) were compared, using three independent full-sister groups. This
technique, which depends on the special sex-determination
mechanism of hymenopterans, minimizes genetic variation.

% Age: two different ages (5–9 days and 28–32 days) were considered.
As in normal colonies, these age classes generally show only one of
the two behavior types (nursing versus foraging); single-cohort
colonies were used for obtaining age-matched groups of nurses
and foragers.
To obtain statistically useful results, two levels of replication were

used: (i) Three individual bees for each combination of factors were
collected as biological replicates; and (ii) each sample was hybridized
two or four times as technical replicates.

In total, 60 individual brains were profiled. The microarray data
were analyzed with both Bayesian statistics and analysis of variance.
The most important result was that brain expression differences can
predict the behavior of individual bees, based on a few genes. The
number of replicates, as well as the control for a large number of
environmental factors, enabled the reliability of these predictions to
be assessed: each brain sample was withheld from the data set in turn
and the remaining samples were used to identify predictor genes,
which were then used to predict the phenotype of the withheld
sample. This leave-one-out cross-validation showed that, with as little

as ten predictor genes, 95% of samples could be assigned to the
correct behavioral category.

Confirmation of the observed predictive expression differences again
proceeded on several levels. Predictive genes were examined against
Drosophila genes and assigned to functional categories. This con-
firmed a fewgenes that are related to neuronal and behavioral plasticity
(e.g. axonogenesis and cell-adhesion genes) or that were identified as
related to behavioral transition (i.e. from nursing to foraging). In
addition, three selected predictor genes were technically verified by
qRT-PCR on independently collected brain samples, using three
technical and seven biological replicates (i.e. 21 data points per gene).
Differences in mRNA levels were in the predicted direction for all three
genes compared with the microarray hybridization experiment.

Figure I.
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Currently, there is no consensus on the most efficient
targeted confirmation strategy [47]. This is evident from
the few ecologicalmicroarray papers that have technically
confirmed the microarray data (Table 1): they all used
different selection criteria. Lai et al. [36] arbitrarily picked
a few cDNA ESTs for RT-PCR that did or did not show
differential expression; Wang et al. [5] complemented
their array analysis with a Northern blot hybridization
to validate a single differentially expressed gene of special
interest; and Juenger et al. [48] selected five candidate
genes that were differentially expressed, and then per-
formed RT-PCR. Moreover, just repeating the expression
measurements with a different quantitative technique is
not informative considering the environmental (rather
than technical) confounders discussed earlier. Biological
validation is required (i.e. confirming that the differen-
tially expressed genes are causally related to the studied
phenomenon). A study that combines technical confir-
mation and biological validation in a convincing fashion
is discussed in Box 1.

Ultimately, the challenge is to prove that the identified
genes are important for acclimation or adaptation. A
promising strategy would be to make use of the standing
genetic variation in wild populations, for example by
extensive comparative genotyping of transcriptional con-
trol regions identified in genetical genomics experiments
[34]. The task would be to test whether the predicted
genetic differences do correlate with differences in adap-
tive capacity. However, such an approach will essentially
remain correlational. For causal validation, it will there-
fore be necessary to use molecular and genetic manipula-
tions, such as gene knock-outs or overexpression in an
ecological setting. However, such studies are currently
still under development.

Recommendations and future challenge
In conclusion, we suggest that researchers should be aware
of the sensitivity of gene expression levels to environmen-
tal variation and should consider carefully whether the
populations under study are likely to show evolutionarily
constrained differences in gene expression. Furthermore,
we advise that multiple testing is corrected for by control-
ling the false discovery rate and that sufficient biological
replicates are obtained from the field to achieve statistical
significance.

Once differential expression profiles have been reliably
determined, the question ‘what do these differences mean
ecologically?’ remains. At present,microarrays are typically
used to identify genes that are differentially expressed
between environments and/or genotypes. This is largely a
descriptive approach that is relatively devoid of a priori
hypotheses. However, phenotypic traits are increasingly
being investigated in detail at the molecular level, and
the insight into regulatorygenepathways is rapidly expand-
ing [45]. For instance, the signaling cascades leading to the
initiation of flowering in plants are understood inmolecular
detail [49], although refinements and additional details are
frequently published. In such a case, it will become possible
to proceed from gene expression observations to targeted
interventions such as gene knock-outs [50] and controlled
overexpression [51]. Only then will ecological microarray

experiments convert from being a largely descriptive
approach to amorehypothesis-driven experimental science.
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