Cyclopeptide Sequencing

Sol Taylor-Brill
The Problem:

How can we determine the amino acid sequence of a peptide from its mass spectrometry spectrum?

(Described in Chapter Four of Bioinformatics Algorithms)
Cyclopeptide Sequencing

- Relies on a “branching and bounding algorithm”
 - Every time the while loop runs, each peptide grows in length by one amino acid
 - Then the spectrum each peptide in the list is be compared to the spectrum of the mystery peptide. If it contains a peak value that is not in the spectrum, it is removed from the list
 - This continues until the peptide whose spectrum exactly matches the given spectrum is identified

- Pros:
 - Faster than a brute force algorithm

- Cons:
 - Still very slow
 - Only worked if the given spectrum was perfect and didn’t have any missing or extraneous peaks.
 - Certain peptides take a lot longer to run than others.
Follows a branching-bounding algorithm, but instead of looking for a peptide that perfectly fits the spectrum, each peptide is scored based on how closely it matches the mystery spectrum.

Every iteration, the candidate peptides with the highest scores are kept and the rest are discarded. The program should return the highest scoring peptide not a “perfect” peptide.

Pros:
- Works with imperfect spectra

Cons:
- Still very slow.
- Doesn’t always accurately reproduce the correct peptide.
Leaderboard w/ Spectral Convolution

- Spectral convolution narrows down the number of amino acids that are added to the peptides each time.
 - Calculate the difference between each peak in the spectrum
 - Based on the numbers between 57 and 186 that appear most frequently, a list of probable amino acids is formed
- Every iteration Leaderboard grows peptides using only those amino acids - not all 20.
- Pros:
 - Faster (Still pretty slow on peptides greater than 5aa long)
 - Hypothetically more accurate
Results

- While Leaderboard conceptually is an improvement over regular Cyclopeptide sequencing, it is still slow for certain peptides and often does not produce accurate results.
 - However this is likely due to me implementing the algorithm incorrectly
 - I have not been able to make Leaderboard run as described in the book, and the program does not currently self-limit correctly.
 - Was unable to test whether it accurately reproduced Tyrocidine B because the program ran too long.