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CHAPTER SUMMARY

Here we outline the meaning of the term alternative

reproductive tactics, or ARTs, and discuss why the existence

of ARTs is so widespread in animals. We ask what we need to

know to understand the evolution of ARTs and the import-

ance of general principles such as frequency dependence,

density dependence, and condition dependence, and what we

need to know about proximate mechanisms involved in

the regulation of ARTs to comprehend evolutionary patterns.

We discuss current issues in the study of ARTs and list 12

questions that we think need particular attention. Throughout

we shall provide representative examples of ARTs in animals

to illustrate the ubiquitous nature of this phenomenon.

1 .1 WHAT IS THE MEANING OF

ALTERNATIVE REPRODUCTIVE
TACTIC?

1.1.1 Alternative

The concept of ARTs refers to alternative ways to obtain

fertilizations in both males and females. In its most common

use, this term refers to traits selected to maximize fitness in

two or more alternative ways in the context of intraspecific

and intrasexual reproductive competition. In general,

alternative phenotypes are characterized by a discontinuous

distribution of traits evolved towards the same functional

end. Examples include size dimorphism, color poly-

morphism, dimorphic morphological structures involved in

the monopolization of resources or mates, and various

behavioral alternatives such as territoriality vs. floating,

monopolization vs. scramble competition, or investment in

primary access to a resource vs. social parasitism. Individ-

uals allocate resources to either one or the other (mutually

exclusive) way of achieving the same functional end using

evolved decision-making rules (Brockmann 2001).

It is important to note here that in the study of allocation

decisions in general, and ARTs in particular, any expression

of continuous variation of traits is not regarded as alternative

tactics. Discontinuity in morphological and physiological

traits is often difficult to determine (Eberhard and

Gutiérrez 1991, Emlen 1996, Kotiaho and Tomkins 2001).

In behavioral traits, in contrast, discontinuities may seem

easier to measure because of their visibility to observers. For

example, there may be overlap between male types of dung

beetles in their expression of horns and body sizes, but it is

very clear-cut whether these male types fight for access to

females or copulate without investing in primary access to

mates (Kotiaho and Tomkins 2001; see also Hunt and

Simmons 2000). However, subtle discontinuities might

exist in any phenotype, including behavior (e.g., when the

performance of alternative tactics depends on condition or

situation: Brockmann and Penn 1992, Brockmann 2002). In

a nutshell, in the context of ARTs, alternative refers to traits

that show a discontinuous distribution.

1.1.2 Reproductive

We speak of alternative reproductive tactics when conspe-

cific, intrasexual competitors find different solutions to

reproductive competition. It is irrelevant whether the

observed variation happens within or between individuals,

but reproductive discontinuity within one population at the

same time is of essence. In a general sense the concerned

traits are alternative responses to competition from mem-

bers of the same sex. Examples are males either courting

females or forcing copulations, as in guppies and other

poeciliid fishes (Bisazza 1993, Bisazza and Pilastro 1997), or

females either digging burrows for their eggs or usurping

those dug by others, as in digger wasps (Brockmann and

Dawkins 1979, Brockmann et al. 1979). It is irrelevant

whether adaptations to reproductive competition are mainly
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Box 1.1 Examples of ARTs in animals

Reference to literature on ARTs in taxa mentioned here is

given in the text of this chapter and in other chapters of this

book.

Molluscs Phallic and aphallic males
Horseshoe crabs Males attached to females and

satellites
Mites Fighter and scrambler males
Crustacea Mate guarding vs. searching in

amphipods
Three alternative male mating
types in isopods

Insects Calling and noncalling males in
crickets
Winged and wingless male morphs
in bladder grasshoppers
Single- and joint-nest foundresses
in social wasps
Color and horn polymorphisms in
male damselflies and beetles
Territorial vs. roaming males in
dragonflies

Fishes Bourgeois males and reproductive
parasites in sunfish, salmonids,
wrasses, cichlids, blennies, and
gobies
Bourgeois males and helpers or
satellites in ocellated wrasse,
cooperative cichlids, and
anabantoids
Courting and coercive males in
poeciliids

Amphibians Calling males and silent interlopers
in frogs and toads

Reptiles Differently colored males with
different mating tactics in lizards

Birds Courting males and satellites in
lekking birds such as ruffs
Pair and extra-pair matings in
many monogamous species (e.g.,
red-winged blackbirds, blue tits)
Single vs. joint courtship in man-
akins
Nesting oneself or dumping eggs
elsewhere (i.e., intraspecific brood
parasitism) in many anatids

Dominant breeders with helpers
that share in reproduction in
scrubwrens, Campylorhynchus
wrens, and dunnocks

Mammals Bourgeois males and satellites in
ungulates such as waterbuck and
kob
Displaying/defending males and
harassing interlopers in fallow deer
Harem owners and opportunistic,
submissive group males in many
primates
Flanged and unflanged males in
orang-utans

What is not an ART?

Cooperative breeding, if helpers do not share in

reproduction (reproduction is a necessary component

of an alternative reproductive tactic)

Interspecific brood parasitism, as heterospecifics are not

reproductive competitors

Sex change, even though in species with alternative

tactics within one sex bourgeois and parasitic options in

this phase may determine the threshold for the optimal

timing of sex change (e.g., in wrasses with two or more

male reproductive tactics: Munoz and Warner 2003)

Simultaneous hermaphroditism, as shedding sperm is not

an alternative to shedding eggs among competitors for

fertilizations

Infanticide, because it is not a reproductive tactic (i.e., to

obtain fertilizations or produce offspring, even though

it may indirectly contribute to this end)

Pure scramble competition for reproduction without

discontinuous phenotypic variation

Alternative phenotypes in nonreproductive contexts (e.g.,

foraging or trophic polymorphisms such as left- and

right-jawed fish, castes, and age polyethism in social

insects when the different morphs do not engage in

reproductive competition; polymorphisms that involve

both males and females such as winged and wingless

forms in some insects, alternative migratory patterns

and diapause patterns; seasonal polyphenism that does

not involve reproductive characters or individuals; and

color polymorphisms caused by apostatic prey selec-

tion or other anti-predator strategies)

2 M. TABORSKY, R. F. OLIVEIRA, AND H. J . BROCKMANN



or partly resulting from intrasexual, intersexual, or natural

selection mechanisms. For example, the evolution of

courting and sneaking tactics in a species may be subject to

intrasexual rivalry, but it may also be influenced by mate

choice (intersexual selection) and by the tactic-specific

potential to evade predation (natural selection). Alterna-

tively, there may be specialization of same-sex conspecifics

in exploiting different reproductive niches. Irrespective of

the underlying selection mechanisms, ultimately the exist-

ence of the two alternative tactics will be the expression of

different solutions to reproductive competition. Interspe-

cific brood parasitism, for example, is not an ART, because

it is not the result of reproductive competition; neither are

phenomena like infanticide, sex change, or age polyethism

in social insects (see Box 1.1).

1.1.3 Tactic

In a general sense tactic refers to a trait or set of traits serving

a particular function. In the context of ARTs, tactics usually

involve behavioral traits, but the term is by no means

restricted to behavioral phenotypes. For instance, various

types of horns in a male population of horned beetles may be

expressions of alternative reproductive tactics (Emlen 1997,

Emlen and Nijhout 2000, Moczek and Emlen 2000); so are

color morphs of some lizards (Sinervo and Lively 1996)

and male genitalia in certain snails (Doums et al. 1998; see

Box 1.1). Often, suites of behavioral, morphological, and

physiological traits are associated in creating alternative

phenotypes within a species (e.g., in plainfin midshipman

fish: Bass and Andersen 1991, Bass 1992, 1996, Brantley

et al. 1993, Brantley and Bass 1994).

We do not think that a distinction between “tactic” and

“strategy” is useful here, because these two terms relate to

the same issue, but at different levels. A distinction is often

made in evolutionary game theory models (Maynard Smith

1982) where strategy relates to a particular life-history

pattern or “genetically based program” (Gross 1996), and

tactic classifies the application of rules that are part of a

strategy (i.e., the phenotype: Shuster and Wade 2003).

When analyzing empirical data, usually our potential for

inference is limited to the level of phenotype, even if we are

ultimately interested in the evolution of traits and hence in

the effect on genotype frequencies. However, most often we

lack information about underlying genotypes. For instance,

we do not know whether different genotypes are involved at

all or whether phenotypic traits are the expression of con-

ditional variation produced by exactly the same genotype

(Shuster andWade 2003). This may not be so bad in the end

(see Grafen’s [1991] discussion on “the phenotypic

gambit”). The difference made between phenotypic traits

produced by same or different genotypes has heuristic

importance for (game theory) evolutionary models, but it

ignores the fact that virtually all phenotypic traits are the

product of genotypic and environmental influence (West-

Eberhard 1989, 2003, Scheiner 1993). Hence, in reality the

borders between the terms “strategy” and “tactic” are vague

and flexible. The underlying mechanisms are usually

unknown (i.e., to which extent patterns are genetically

determined) at a point when we have not yet studied a

phenomenon extensively but nonetheless wish to commu-

nicate about it. Therefore, we prefer an operational use of

terms here instead of one encumbered with functional

implications, just as in the sex-allocation literature (Char-

nov 1982; see Brockmann 2001). In short, we regard “tactic”

and “strategy” as synonymous but prefer the use of “tactic”

because we mainly deal with phenotypes and because of the

connotations of the term strategy.

In essence, “alternative reproductive tactics” refers to

discontinuous behavioral and other traits selected to maxi-

mize fitness in two or more alternative ways in the context of

intraspecific and intrasexual reproductive competition.

Individuals allocate resources to either one or the other

(mutually exclusive) way of achieving the same functional

end using evolved decision-making rules. This concept may

apply to any major taxon, but we shall confine our discus-

sion to the animal kingdom.

1.2 WHERE, WHEN, AND WHY DO WE

EXPECT TO FIND ARTS?

We expect to find ARTs whenever there is fitness to be

gained by pursuing different reproductive tactics and when

intermediate expressions of a reproductive trait are either

not possible (e.g., there is nothing in between nesting

oneself and dumping eggs in conspecifics’ nests: Yom-Tov

1980, 2001) or selected against by disruptive selection (e.g.,

benefits of large size for bourgeois tactics and of small size

for parasitic1 tactics: Taborsky 1999). Most often we find

1 The term “bourgeois” tactic refers to individuals investing in

privileged access to mates, by behavioral (e.g., defense,

courtship), physiological (e.g., pheromones), or morphological

means (e.g., secondary sexual characters). The “parasitic” tactic,

in contrast, is performed by individuals exploiting the invest-

ment of bourgeois conspecifics. In general discussions of the
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ARTs when there is investment to be exploited by same-sex

competitors (Brockmann and Dawkins 1979, Wirtz 1982,

Field 1992, 1994, Andersson 1994, Taborsky 1994, 1998,

2001, Villalobos and Shelly 1996, Hogg and Forbes

1997, Tallamy 2005). In principle, this is possible in both

sexes, but because of the unavoidable higher investment of

females (even parasitic females assume the costs of egg

production), ARTs are expected to evolve more often in the

male sex. It is worth emphasizing that anisogamy biases not

only the intensity of sexual selection between the sexes, but

consequently also the evolution of ARTs.

Investment in the privileged access to mates or fertilizable

gametes bears costs (Taborsky et al. 1987, Simmons et al.

1992, Bailey et al. 1993, Lens et al. 1994, Prestwich 1994,

Cordts and Partridge 1996, Grafe 1996, Hoback andWagner

1997, Reinhold et al. 1998, Grafe and Thein 2001, Thomas

2002, Yoccoz et al. 2002, Basolo andAlcaraz 2003,Ward et al.

2003, Barboza et al. 2004, Pruden and Uetz 2004, Wagner

2005; but see Hack 1998, Kotiaho and Simmons 2003). It

may involve (1) the production of conspicuous signals that

may not only attractmates but also predators and competitors

(Andersson 1994); (2) the construction of energetically

demanding structures for mate attraction and brood care

(Hansell 1984, 2005); or (3) parental investment to protect,

provision, and raise offspring (Clutton-Brock 1991). Indi-

viduals using parasitic tactics may omit these costs and

exploit their competitors’ investment to gain access to mates

or fertilizable gametes (Wirtz 1982, Miller 1984, Taborsky

et al. 1987, Tomkins and Simmons 2000; see Taborsky 1994

for review). Often they use secretive “sneaking” tactics or fast

“streaking” that cannot be easily overcome by the exploited

bourgeois males (Warner and Hoffman 1980, Gross 1982,

Westneat 1993, Kempenaers et al. 1995, 2001, Hall and

Hanlon 2002, Correa et al. 2003, Sato et al. 2004; see

Taborsky 1994, Westneat and Stewart 2003 for review).

Alternatively, males using parasitic tactics may receive

resources required for mating, or brood care for their off-

spring from bourgeois males also by force (van den Berghe

1988, Sinervo and Lively 1996, Mboko and Kohda 1999).

Cooperative behavior may be applied as an alternative to

a purely parasitic tactic when individuals attempt to benefit

from the effort of bourgeois competitors (Taborsky et al.

1987, Martin and Taborsky 1997, Dierkes et al. 1999,

Taborsky 2001, Oliveira et al. 2002). Competing individuals

may cooperate or “trade” with resource holders by paying

for access to reproductive options by mutualism or reci-

procity (Reyer 1984, 1986, Taborsky 1984, 1985, Lejeune

1985, Taborsky et al. 1987, Hatchwell and Davies 1992,

Hartley et al. 1995, Davies et al. 1996, Magrath and

Whittingham 1997,Martin andTaborsky 1997,Whittingham

et al. 1997, Balshine-Earn et al. 1998, Johnstone and Cant

1999, Clutton-Brock et al. 2002, Oliveira et al. 2002,

Richardson et al. 2002, Double and Cockburn 2003,

Dickinson 2004, Huck et al. 2004, Webster et al. 2004,

Bergmüller and Taborsky 2005). The relationships between

such cooperating competitors are usually asymmetric,

particularly in their resource-holding potential. The

mechanisms regulating and stabilizing such cooperative

relationships between reproductive competitors have been

the target of much recent research (Vehrencamp 1983,

Keller and Reeve 1994, Magrath and Whittingham

1997, Balshine-Earn et al. 1998, Johnstone and Cant 1999,

Johnstone 2000, Kokko et al. 2002, Kokko 2003, Skubic

et al. 2004, Bergmüller and Taborsky 2005, Bergmüller

et al. 2005, Stiver et al. 2005), but there is still a great need

for further integration of theory and empirical data.

Females may benefit from exploiting the nests built by

other females (e.g., in digger wasps: Brockmann and

Dawkins 1979, Brockmann et al. 1979, Field 1992, 1994) or

by dumping eggs in another female’s nest (or mouth) that

will be cared for by the owner (i.e., intraspecific brood

parasitism in insects: Eickwort 1975, Tallamy 1985, 2005,

Müller et al. 1990, Brockmann 1993, Zink 2003; fish:

Ribbink 1977, Yanagisawa 1985, Kellog et al. 1998; and

birds: Yom-Tov 1980, 2001, Rohwer and Freeman 1989,

Petrie andMøller 1991, Eadie and Fryxell 1992, Lyon 2003,

Griffith et al. 2004). In this way, preparation of breeding

sites and brood care can be spared by applying parasitic

tactics (Sandell and Diemer 1999), or productivity can be

increased (Tallamy and Horton 1990, Brown and Brown

1997, Ahlund and Andersson 2002, Zink 2003).

We may find ARTs also when animals use different

niches for reproduction (such as temporally varying habi-

tats). Selection may then favor multiple phenotypes that are

specialized to exploit reproductive opportunities in each

niche. Intermediate phenotypes will not be as effective as

specialized ones when using the available options (Shuster

function of alternative tactics, these terms are preferable to the

more descriptive terms often used in particular case studies (e.g.,

bourgeois males have been named guarders, territorials, primary

males, parentals, nest males, type 1 males, or cuckolds, while

parasitic males have been referred to as sneakers, streakers,

satellites, hiders, pseudo-females, type 2 males, or cuckolders).

For a discussion of reasons to use “bourgeois” and “parasitic” as

collective, functional terms for ARTs see Taborsky (1997).
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and Wade 2003). In this case, the frequency of morphs will

depend on the reproductive potential in each niche (Zera

and Rankin 1989, Mole and Zera 1993, Denno 1994,

Langellotto et al. 2000, Langellotto and Denno 2001; see

also� Chapter� 2� of� this� book).

1 .3 WHICH EVOLUTIONARY

PROCESSES ARE CAUSING THE

PATTERNS WE FIND IN ARTS?

A major objective in evolutionary biology is to understand

processes by which alternative phenotypes are created and

maintained within populations (West-Eberhard 1986,

Skúlason and Smith 1995, Smith and Skúlason 1996). This

includes the question for the existence of two sexes (Parker

et al. 1972), polymorphisms for the use of food and habitat

(Sage and Selander 1975, Snorrason et al. 1994, Skúlason

and Smith 1995, Robinson and Wilson 1996, Smith

and Skúlason 1996), laterality (Hori 1993, McGrew and

Marchant 1997, Nakajima et al. 2004), locomotion and

migration patterns (Berthold and Querner 1982, Verspoor

and Cole 1989, Berthold et al. 1990, Hindar and Jonsson

1993, Kaitala et al. 1993, Biro and Ridgway 1995, Smith and

Skúlason 1996), predator evasion (Taborsky et al. 2003,

Chipps et al. 2004), and the existence of reproductive

“producers” and “scroungers” in same-sex conspecifics

(Taborsky 1994, 2001, Gross 1996, Brockmann 2001). To

understand the discontinuity of reproductive tactics, we

should first look at the options of the involved players; that

is, we should first know the patterns before disentangling

the processes causing them. How do competitors achieve

fertilizations? How divergent are the alternative tactics? Do

individuals differ consistently in their tactics or are they

choosing tactics according to circumstances? To identify

underlying processes, we may analyze ARTs at three dif-

ferent levels of classification (Taborsky 1998).

1.3.1 Selection

Alternative tactics evolve when there is fitness to be gained

by pursuing divergent allocation tactics. There are two

principal conditions favoring the evolution of ARTs:

(1) Investment may be there to be exploited by conspe-

cific, same-sex competitors, as we have outlined above.

In the chosen sex, sexual selection leads to high

investment in structures promoting mate acquisition.

This includes secondary sexual signals that indicate

quality (indirect benefits to mates) and supplying

resources and brood care (direct benefits). Sexual

selection has two major effects in this context; firstly, it

causes variation in the success of the chosen sex

(Darwin 1871). If some males are able to obtain several

mates, others will end up without success (depending

on the operational sex ratio: Shuster and Wade 2003),

which selects for the pursuit of alternative tactics.

Secondly, exploiting the investment of competitors

without paying their costs may result in higher fitness

(Fu et al. 2001). Both consequences of strong sexual

selection set the stage for the evolution of ARTs.

Indeed, a positive relationship between strong sexual

selection and the evolution of ARTs has been observed

(Gadgil 1972, Gross 1996, Sinervo 2001), although

there may be negative feedback mechanisms involved

as well (Jones et al. 2001a, b, Reichard et al. 2005).

(2) Different reproductive niches may exist for conspe-

cific,� same-sex� competitors� (see� Chapter� 2).� This� may

occur when reproductive habitats differ discontinu-

ously (Denno 1994, Langellotto and Denno 2001,

Hiebeler 2004) or when competitors differ in some

important feature as a result of natural selection (e.g.,

food niches or predation may select for body-size

divergence: Pigeon et al. 1997, Lu and Bernatchez

1999, Jonsson and Jonsson 2001, Trudel et al. 2001,

Kurdziel and Knowles 2002, Taborsky et al. 2003,

Snorrason and Skúlason 2004). Little is known about

the consequences of such polymorphisms on repro-

ductive tactics (but see Kurdziel and Knowles [2002]

for a notable exception) or about what is cause and

what is effect (e.g., is a particular size dimorphism

caused by natural selection favoring divergence, with

respective consequence for reproduction, or does it

result from ARTs caused by sexual selection as

outlined above, with respective consequences

regarding other aspects of life such as feeding and

predator evasion? See Parker et al. 2001).

1.3.2 Flexibility

On the individual level, alternative tactics may be performed

at the same time (simultaneous ARTs), in succession

(sequential ARTs), or they may be fixed for life (fixed ARTs:

Taborsky 1998) (Figure 1.1). This is a general feature of

allocation patterns (Brockmann 2001), as found also in sex

allocation (simultaneous and sequential hermaphroditism,
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and gonochorism: Charnov 1982). Simultaneous and

sequential ARTs are the product of a flexible or plastic

response to conditions. A flexible response (i.e., phenotypic

plasticity) may be beneficial if conditions vary either with

regard to the physical or social environment of an animal, or

its own physical condition (West-Eberhard 2003). If

momentary conditions are highly unpredictable (e.g., num-

ber of potential partners, quality and number of current

competitors in the neighborhood, tactic-dependent risk),

there is selection for simultaneous ARTs as found, for

example, in many fishes (Keenleyside 1972, Rowland 1979,

Jennings and Philipp 1992; reviewed in Taborsky 1994),

anurans (Perrill et al. 1982, Fukuyama 1991, Lucas et al.

1996, Byrne and Roberts 2004; reviewed in Halliday and

Tejedo 1995), and birds (Westneat 1993, Kempenaers et al.

1995, 2001; reviewed inWestneat 2003). If conditions change

with ontogeny, which applies in particular for organismswith

indeterminate growth, sequential ARTs may be the optimal

response (e.g., Warner et al. 1975, Magnhagen 1992, de

Fraipont et al. 1993, Dierkes et al. 1999, Alonzo et al. 2000,

Utami et al. 2002). If conditions either change rarely during

the lifetime of an individual or change is unpredictable, fixed

ARTs may be selected for (Shuster and Wade 2003). Addi-

tional factors influencing the existence (and coexistence) of

fixed and flexible ARTs are differences in success between

tactics and the costs of plasticity (Plaistow et al. 2004).

1.3.3 Origin of variation

Discontinuous phenotypic variation may originate from

monomorphic or polymorphic genotypes (Austad 1984,

Gross 1996, Shuster and Wade 2003). In genetically uni-

form individuals, the response to reproductive competition

may be triggered by current conditions or by developmental

switches; individual tactics differ due to diverging condi-

tions, despite the same underlying genetic architecture. For

example, individuals finding themselves in an unfavorable

condition may do best by adopting an alternative tactic to

the monopolization of mates, thereby doing “the best of a

bad job” (Dawkins 1980). If resource availability varies

strongly during development, the decision to adopt one or

the other tactic may depend on the passing of a threshold; an

individual passing a size threshold, for example, may do best

by continuing to grow to adopt a bourgeois reproductive

tactic later, while if this threshold is not passed, it may pay

to reproduce early and in a parasitic role (note that in some

salmonid fishes, it works the other way round; see below).

Size thresholds may be important particularly for short-

lived animals in seasonal habitats: early-born individuals

have more time to grow in favorable conditions, so they will

be larger at the start of reproduction. Such “birthdate effects”

(Taborsky 1998) apparently influence the occurrence of

ARTs in temperate fish (see Thorpe 1986). Thresholds in

Figure 1.1 Alternative reproductive tactics can be fixed over a

lifetime or plastic. In the latter case, they may be performed at the

same time interval (simultaneous ARTs) or in a fixed or reversible

sequence (sequential ARTs). See text for examples.
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growth rates can also influence the choice of tactic (Hutchings

and Myers 1994); fast-growing male salmon may start to

reproduce earlier, while slow growers delay reproduction and

end up in the bourgeois role as a consequence of prolonged

growth (Thorpe and Morgan 1980, Thorpe 1986, Gross

1991). In anadromous salmonids this is linked to highly

divergent feeding conditions between reproductive sites

(oligotrophic rivers) and productive foraging areas (sea

habitats: Healey et al. 2000, Vollestad et al. 2004).

Discontinuous alternative reproductive tactics may

result also from polymorphic genotypes, regardless of

whether variation is due to major gene effects or polygenic

origin. Examples are known from a wide taxonomic range –

from mites (Radwan 1995, 2003) and isopods (Shuster and

Box 1.2 The origin of male polymorphisms in acarid

mites

“Fighter” and “scrambler” males occur in a number of

acarid mites belonging to at least three genera (Sancassa-

Sancassania, Rhizoglyphus, Schwiebia: Woodring 1969,

Radwan 1995, 2001). Fighter males can kill competitors by

puncturing their cuticle with a modified third pair of legs.

Fighters may outcompete scramblers in low-density situations,

but not at high densities, where they suffer from frequent and

costly fights (Radwan 1993). Both a genetic polymorphism

and a conditional expression of tactics with strong environ-

mental influence during development have been found in dif-

ferent species of this group. In Rhizoglyphus robini, fighters

sire higher proportions of fighters and the heritability of the

male morphs is high; however the genetic mechanism under-

lying this polyphenism is not yet understood (Radwan 1995,

2003). Colony size and density have no effect on morph fre-

quency, but diet provided during development does, with fewer

fighters emerging under poor conditions (Radwan 1995). In

this species, fighters survive longer, independently of colony

density and morph ratio in the population (Radwan and

Bogacz 2000, Radwan and Klimas 2001). Surprisingly,

morph fitness was not found to be negatively frequency

dependent, as would be expected if a genetic polymorphism is

stabilized at an evolutionarily stable state (ESS) condition

(Radwan and Klimas 2001).

In R. echinopus, no significant heritability of male

morph was found, but the probability of males turning into

fighters depended on chemical signals associated with

colony density (Radwan 2001). In Sancassania berlesei, the

decision by males to turn into fighters or scramblers

strongly depends on social and food conditions during

development (Timms et al. 1980, 1982, Radwan 1993,

1995, Radwan et al. 2002, Tomkins et al. 2004). In small or

low density populations the proportion of fighter males is

higher (Figure 1.2). Chemical (pheromonal) signals are

used to determine tactic choice (Timms et al. 1980, Rad-

wan et al. 2002), but the final-instar nymph weight is also

important with heavier nymphs being more likely to

become fighters, albeit at some costs: same-weight final-

instar nymphs produced smaller fighters than scramblers

(Radwan et al. 2002). Even though there is no indication of

single-locus inheritance of morphs in this species, there is

evidence for genetic covariance between sire status and

offspring morph and considerable heritability of morph

expression due to an adaptive response of the threshold

reaction norm (Tomkins et al. 2004, Unrug et al. 2004).

Data from this species are compatible with the status-

dependent ESS model (Gross 1996), but a critical test

showing that fitness functions of the alternative tactics cross

at the phenotypic switch point is still missing (Tomkins

et al. 2004).
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Figure 1.2 The proportion of fighter males emerging in laboratory

populations of the acarid mite Sancassania berlesei depends on

density. In an experiment, larvae originating from three different

field populations were introduced into vials either alone or in

groups of 10–40 individuals. While the majority of lone males

turned into the fighter morph, the proportions of fighter males

declined with increasing density, especially strongly in mites

coming from two out of three natural populations. (After Tomkins

et al. 2004.)
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Figure 1.3 (A) When male competitors in a population show either

bourgeois or parasitic reproductive behavior depending on condition,

e.g., body size, and their fitness functions cross at a given size, males

should switch from one to the other tactic at this intersection. (B) The

fitness ofmalesmay depend also on the relative numbers of both types

of males. If the fitness functions depending on relative frequencies of

both male types cross, tactic frequencies in the population should

converge towards thepoint of intersection.Howdoes this relate to size-

dependent tactic choice?Weassumehere that the fitness lines cross at a

bourgeois male proportion of 0.5; if the population comprises 75%

bourgeois males at some point, the average fitness of individuals

performing the parasitic tactic would increase relative to that of

bourgeois males. (C) The effect of this situation on optimal size-

dependent tactic choice: while the fitness of bourgeoismales drops due
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Wade 1991, Shuster 1992) to fish (Ryan et al. 1992), lizards

(Sinervo and Lively 1996), and birds (Lank et al. 1995,

1999). In this case, genotype frequencies underlying ARTs

are believed to be balanced by frequency-dependent selec-

tion, leading to equal lifetime fitness expectations of indi-

viduals using different tactics (Shuster and Wade 1991,

Ryan et al. 1992, Repka and Gross 1995; but see Boxes 1.2

and� 1.3�;� see� also� Chapter� 2� of� this� book).

The relative importance of genetic monomorphism with

conditional responses as opposed to genetic polymorphism

for the evolution of ARTs has been extensively debated

(Pienaar and Greeff 2003; see Gross 1996, Shuster and

Wade 2003 for review). The vast majority of described cases

of ARTs involves some conditional responses of repro-

ductive competitors (Gross 1996, Lank et al. 1999). Because

a conditional choice of tactics has been associated with

genetic monomorphism, it has been argued that genetic

polymorphisms play only a minor role in the causation of

ARTs (Gross 1996, Gross and Repka 1998a). This view has

been challenged (Shuster and Wade 2003). Why is this

debate of general interest? To appreciate the importance of

the issue, we need to consider the implications of these two

Box 1.3 Do fitness curves always cross?

When condition-dependent fitness functions differ

between bourgeois and parasitic males and the lines cross,

tactic frequencies should depend on this point of inter-

section (Gross 1982, 1996) (Figure 1.3A). In addition, the

fitness of each type of male may depend on the proportions

of both male types in the population, resulting in fre-

quency-dependent selection: the more parasitic males

compete amongst each other, the less it may pay to choose

this tactic (Figure 1.3B), which feeds back on condition-

dependent tactic choice (Figure 1.3C and 1.3E). However,

cases in which individuals differ in quality demonstrate

that frequency dependence is not necessarily involved in

the evolution of ARTs. Take a species with early- and late-

born males in a seasonal environment that have very dif-

ferent lengths of growth periods before the first winter. In

a short-lived species, reproduction may occur only within

one reproductive season, i.e., after the first winter. Early-

and late-born males will differ in size because they

encountered good growth conditions in their first year

during time periods of different period lengths (e.g.,

Mediterranean wrasses: Alonzo et al. 2000). Large males

may do best by monopolizing resources and access to

females; small males may do best by parasitizing the

reproductive effort of large males because they are not able

to compete with their larger conspecifics when performing

a bourgeois tactic. The average reproductive success of the

small males may never reach the same level as the average

success of the higher-quality (large) males, even if they are

rare in the population, because their small size may act as a

constraint on getting access to fertilizable gametes. The

result will be ARTs that are not stabilized by frequency-

dependent selection (Figure 1.3D). Parasitic males will

still persist in the population because males differ in

quality due to differing growth conditions, as outlined

above. Quality differences between individuals due to

developmental constraints are very widespread

(Schlichting and Pigliucci 1998), but hitherto, they have

not been dealt with in this context in much detail. In

theoretical models Mart Gross and Joe Repka (Repka and

Gross 1995, Gross and Repka 1998a, b) showed that

equilibria between alternative tactics causing unequal fit-

nesses may be evolutionarily stable; this approach has been

criticized, however, because of unrealistic assumptions

(Shuster and Wade 2003).

Caption for Fig. 1.3 (cont.) to competition among males of this type,

the fitness of parasitic males increases, which means that males should

switch to the bourgeois tactic at a larger size (size “5” instead of “4” as

depicted in (A)). If in contrast only 25% of themales in the population

perform the bourgeois tactic, the fitness of bourgeois males will

increase because of low competition while that of parasitic males will

drop due to competition of these males when exploiting the relatively

small number of bourgeois males in the population (see (E)). Males

should switch earlier now from the parasitic to the bourgeois tactic.

Note that for simplicity in this graphical model we assume that the

relative frequency of both tactics (as shown in (B)) influences the pay-

off of males in a similar way over the whole range of sizes, i.e., the

intercept of the fitness function changes, but not its shape or slope

(cf. panels (C) and (E), and panel (A)). (D) Itmay be, however, that the

fitness functions depending on relative frequencies of both male types

do not cross, i.e., bourgeois males may always do better than parasitic

males, regardless of the proportions of males in the population

performing either tactic (see explanation in text). If this is the case,

frequency-dependent selection will not determine tactic choice in the

population. Tactic choice and hence tactic frequencies will then

depend only onother factors (likemale phenotypic quality such as size,

which may be determined by developmental constraints).
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potential mechanisms. When animals act according to

conditions without any genetic component responsible

for the type of response (i.e., tactic performance is not

heritable), (a) the form and frequency of this response is not

subject to selection (Shuster and Wade 2003), which pre-

cludes adaptive evolution, (b) different tactics may result in

unequal fitness (Repka and Gross 1995, Gross and Repka

1998b), and (c) the frequencies of tactics may be inde-

pendent of each other and of their relative success (see

Box 1.3). When tactic choice is under genetic control and

heritable, frequency-dependent selection will lead to (a) a

fitness equilibrium associated with alternative tactics and

(b) stable frequencies of ARTs in the population (Ryan et al.

1992), or (c) oscillations of tactics if no stable equilibrium

can be reached (particularly if more than two ARTs exist in

a population: Shuster 1989, Shuster and Wade 1991,

Sinervo and Lively 1996). According to the “status-

dependent selection model” (Gross 1996), the assumption

of conditional tactics based on genetic monomorphism

coincides with unequal fitnesses of players, except at the

switch point where an individual is expected to change

from one tactic to another. On the contrary, a genetic

polymorphism can only persist if the lifetime fitnesses of

players are equal or oscillating (Slatkin 1978, 1979, Shuster

and Wade 1991, 2003).

It would be naı̈ve to assume that ARTs will be either

“genetically” or “environmentally” determined (Caro and

Bateson 1986). In reality, many if not most dimorphic traits

seem to be threshold traits (Roff 1996) influenced by

quantitative trait loci: morph expression depends on

whether a “liability” value is above or below a threshold

(Falconer and Mackay 1996). In the context of ARTs this

was shown for the expression of different male morphs in

mites with the help of selection experiments, by which the

threshold reaction norm was shifted (Unrug et al. 2004) (see

Box 1.2). In this scenario, developmental pathways may

change abruptly, e.g., at a particular size, producing dif-

ferent phenotypes on either side of the threshold (Emlen

and Nijhout 2000, Nijhout 2003, Lee 2005). The operation

of genetically based developmental thresholds means that

trait expression is both conditional and heritable. It allows

alternative phenotypes to evolve largely independently from

each other, which greatly increases the scope for the

evolution of alternative tactics (West-Eberhard 1989, 2003;

see also Tomkins et al. 2005).

If adaptive evolution is not underlying conditional

ARTs (as argued by Shuster and Wade 2003), why do they

exist in the first place, why are conditional decisions

apparently the rule rather than the exception, and why do

genetic polymorphisms associated with ARTs appear to be

rare? One may ponder whether these concepts are suffi-

cient to explain the evolution of ARTs. The problem is

that in this discussion, conditional response and the

genetic basis of tactics apparently have been separated

from each other. More realistically, the thresholds or

developmental switch points involved in tactic choice have

a genetic basis and will therefore be subject to selection and

adaptive evolution (Tomkins et al. 2004). In other words,

phenotypic plasticity is heritable, and genetically based

plastic traits vary among individuals of a population (see

Chapter� 5� of� this� boo�k�).� Condit�ional� responses� may� hav�e� a

genetic basis but still lead to different lifetime repro-

ductive successes of tactics (Hazel et al. 1990). This issue

needs further theoretical treatment (see Shuster and Wade

2003).

1 .4 INTEGRATING ACROSS LEVELS:

PROXIMATE AND ULTIMATE

CAUSES OF ARTS

How do the proximate mechanisms underlying the

expression of ARTs relate to their evolution? An important

aspect in our understanding of ARTs is the degree of

divergence between tactics, which may functionally relate to

the underlying mechanisms (e.g., pleiotropic effects if

genetic determination is involved, or variance in ontogen-

etic conditions). In this context it is necessary to understand

the proximate mechanisms involved to be able to interpret

observed patterns. A distinction should be made, for

instance, between alternative phenotypes that diverge only

in behavioral traits or also in the expression of morpho-

logical and anatomical traits. Since behavior is often more

labile than morphology and anatomy, the mechanisms

underlying the expression of behavioral variation should be

more flexible than those underlying morphological and

anatomical variation.

Hormonal regulation is usually involved in the expres-

sion of alternative reproductive behavior (Brantley et al.

1993, Oliveira et al. 2005). Ketterson and Nolan (1999)

proposed that one could distinguish between adaptations

and exaptations (sensu Gould and Vrba 1982) in hormone-

dependent traits by assessing whether these traits arose

either in response to selection on circulating hormone levels

or in response to variation in the responsiveness of the target

tissues to invariant hormone levels (Figure 1.4). In the

former case, selection probably did not act on all correlated
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traits and thus the ones that subsequently conferred an

advantage to its carriers should be viewed as exaptations. In

the latter case, selection probably acted independently on

target tissue sensitivity to constant hormone levels, for

example by varying density of receptors or the expression

of enzymes for particular biosynthetic pathways. ARTs

that involve the differential development of androgen-

dependent traits within the same phenotype, such as the

differentiation of larger testes in parasitic males without

displaying secondary sex characters, suggest a compart-

mentalization of androgen effects on different target tissues

that can be achieved by varying the densities of androgen

receptors in different targets. Therefore, ARTs that involve

the compartmentalization of different endocrine-mediated

traits probably evolved as adaptations, whereas ARTs in

which there are no compartmentalization effects (e.g.,

conditional tactics, such as the facultative use of sneaking

behavior by nest-holder males in sticklebacks: Morris 1952,

Rico et al. 1992) rather represent exaptations. This

approach stresses the importance that studies of proximate

T

T

T

T

T

Trait 1

Trait 1

Trait 2

Trait 3

Target Tissure 1

Figure 1.4 A model of two alternative evolutionary mechanisms

underlying the hormonal regulation of alternative reproductive

phenotype expression. Upper panel Alternative reproductive

traits arise in response to selection on circulating hormone levels,

whereby selection may not act on all correlated traits. Lower

panel Alternative reproductive traits arise in response to selection

on responsiveness of target tissues to (possibly invariant)

hormone levels; here, traits result from the independent

reaction of target tissue sensitivity to constant hormone

levels.
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mechanisms may have to increasing our understanding of

the evolution of alternative reproductive phenotypes.

The neural mechanisms behind alternative repro-

ductive behavior patterns may involve the structural

reorganization of neural circuits underlying the expression

of reproductive behavior, or alternatively biochemical

switching of existing circuits by neuromodulators (Zupanc

and Lamprecht 2000). The former mechanisms may

involve synaptogenesis, the regulation of apoptosis, and

neurogenesis and thus should be associated with a slower,

discontinuous but long-lasting expression of phenotypic

plasticity. In contrast, the latter mechanisms should be

associated with faster, gradual, and transient changes.

These potential neural mechanisms underlying pheno-

typic plasticity may interact with hormonal mechanisms:

structural (re)organization of neural circuits can be influ-

enced by organizational effects of hormones during well-

defined sensitive periods in the life of an individual, while

biochemical switches can be driven by activational effects

of hormones on central pathways underlying behavior (for

a review on organizational vs. activational effects of hor-

mones in vertebrates see Arnold and Breedlove 1985).

Therefore, it is expected that simultaneous or reversible

conditional tactics that may require rapid and transient

changes in neural activity are mediated by biochemical

switches influenced by hormones in an activational fashion

(Zupanc and Lamprecht 2000, Hofmann 2003), whereas

both fixed tactics involving the organization of the

phenotype early in development and sequential tactics

with a fixed sequence that involve a post-maturational

reorganization of the phenotype are mediated by structural

reorganization of neural networks. Concomitantly, the role

of hormones in the expression of the different types of

tactics would differ, with organizational (or reorganiza-

tional) effects predicted to be associated with fixed and

fixed-sequence tactics, and activational effects expected in

simultaneous or reversible conditional tactics (Moore

1991, Moore et al. 1998, Oliveira 2005).

Knowledge of the proximate mechanisms underlying

the expression of ARTs may help to understand their

evolution. Ketterson and co-workers (Ketterson et al.

1996, Ketterson and Nolan 1999) have proposed the use of

phenotypic engineering to investigate the evolution of

endocrine-mediated traits. This approach is based on the

exogenous administration of hormones to study ecological

consequences of the development of hormone-dependent

traits. This approach can help to identify the costs and

benefits associated with particular traits specific to each

tactic as well as the evolutionary scenario in which ARTs

evolved. A cost–benefit analysis of ARTs in teleosts, for

instance, would help to identify costs associated with

specific tactics imposed by their underlying physiological

mechanisms, which may act as constraints for the evolu-

tion of ARTs. For example, bourgeois males usually

display a set of androgen-dependent behavioral traits that

help them to compete with other males for resources or

females (e.g., through territoriality), which suggests

that costs associated with maintaining high androgen

levels should be associated with the bourgeois tactic

(e.g., increased energy consumption, effects on immuno-

competence, increased risk of predation, and a higher

incidence of injuries from agonistic interactions: e.g.,

Wingfield et al. 1999, 2001, Ros et al. 2006). Therefore,

knowledge of the physiological mechanisms underlying

the expression of ARTs may shed light on the evolutionary

landscapes in which they might have evolved by helping to

identify proximate mechanisms that act as mediators of

adaptive traits or as potential physiological constraints

imposed by pleiotropic-like effects of hormones on the

evolution of ARTs.

1 .5 CURRENT ISSUES: WHAT ARE THE

QUESTIONS WE NEED TO SOLVE?

Based on the above discussion and arguments we should like

to emphasize 12 important questions regarding the evolu-

tion of ARTs.

(1) To what extent are thresholds and developmental

switches responsible for the evolution of decision rules?

In other words, is there genetic variance involved in the

conditional response?

(2) If there is sufficient genetic variance among individuals

of a population, to what degree are thresholds and

developmental switch points subject to selection? An

experimental approach would be desirable here.

(3) The occurrence of ARTs is apparently related to the

intensity of sexual selection and to the existence of an

opportunity to exploit the investment of same-sex

conspecific competitors to acquire mates or fertiliza-

tions. These potential causes of the evolution of ARTs

are not independent; however, they may independently

influence the evolution of decision rules. Is one or the

other of these factors more important (or of sole

importance), or are additional factors involved?
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(4) Is the observed intrasexual variation in reproductive

phenotypes necessarily adaptive, or are there some-

times constraints (e.g., because a certain part of the

population faces inferior conditions during ontogeny,

causing significant intrasexual size variation; see Box

1.3) that may produce ARTs?

(5) Are there particular environmental circumstances (both

physical and social) that favor either a combination

between genetic monomorphism and conditional

response or a genetic polymorphism underlying ARTs,

either with or without conditional response components?

(6) The expression of ARTs may be fixed for an individual

or flexible over a lifetime (Figure 1.1): on the

proximate level, to what extent are they caused by

structural (re)organization of neural networks, and

what organizational and activational hormonal effects

regulate fixed vs. plastic alternative phenotypes?

(7) What are the selective regimes favoring the evolution

of fixed vs. plastic, simultaneous, or sequential ARTs?

That is, which environmental conditions and intrinsic

factors (i.e., constraints and life-history patterns) may

take effect? Are fixed phenotypes associated with

genetic polymorphisms and flexible ones with genetic

monomorphism?

(8) How does discontinuous phenotypic variation among

competitors that evolved in other functional contexts

(e.g., by food niches or predation scenarios) affect the

evolution of ARTs?

(9) What causes intermediate types to be less successful than

“pure” alternatives? That is, why is selection disruptive?

(10) What controls tactic frequencies? Is frequency-

dependent (Repka and Gross 1995) and density-

dependent (Tomkins andBrown2004) selection involved

if tactics are purely conditional (whichmay cause unequal

average fitnesses)? When do crossing fitness curves

predict relative tactic frequencies (see Box 1.3)?

(11) What processes cause tactics to stabilize at an

equilibrium frequency or to oscillate?

(12) Why do particular phenotypes take the form they do?

Why are particular solutions so frequent across a wide

range of taxa (e.g., female mimicry in males)?

Most of these questions have been asked before in

various contexts and often with focus on certain examples,

and some have been partially answered either on an

empirical or theoretical basis. However, for most if not all of

them, we lack enough crucial information to be able to give

an answer at the level of specific examples and on a more

general basis. This is not an exhaustive list. Of course there

are other questions and details we need to consider (e.g., see

Box 1.2 and other chapters of this book), but we believe that

finding answers to these 12 questions will significantly

advance our understanding of ARTs.
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