References

HOME:

Aristotle. (1910). Historia Animalium. Transl. by D'Arcy Wentworth Thompson. Oxford: Clarendon Press.

Hladký,V and Havlí?ek, J. (2013). Was Tinbergen an Aristotelian? Comparison of Tinbergen’s Four Whys and Aristotle’s Four Causes. Human Ethology Bultten 28:4, 3-11.


Tinbergen, L. (1939). Zur Fortpflanzungsethologiveon Sepia officinalis. Zool. 3, 323-364.

PHYLOGENY:

Barratt, I and Alcock, L. (2012). Sepia officinalis. IUCN Red List of Threatened Species.


Hanlon, R.T. & Hixon, R. F. (1980). Body patterning and field observations of Octopus burryi. Bulletin of Marine Science 30, 749–755.


Kroger, B., Vinther, J., Fuchs, D. (2011). Cephalopod origin and evolution: A congruent picture emerging from fossils, development and molecules. Bioessays 33(8): 602-13.


Lindgren, A.R., Pankey, M.S., Hochberg, F.G., Oakley, T.D. (2012). A multi-gene phylogeny of Cephalopoda supports convergent morphological evolution in association with multiple habitat shifts in the marine environment. Evolutionary Biology 2012, 12:129.


Messenger, J. B. (1991). Photoreception and vision in molluscs. In J. R. Cronly-Dillon & R. L. Gregory (Eds.). Vision and visual dysfunction. Evolution of the eye and visual system (Vol. 2, pp. 364–397). CRC Press Inc.


Messenger, J.B. (2001). Cephalopod chromatophores: neurobiology and natural history. Biol Rev Camb Philos Soc. 76(4): 473-528. Review.


Packard, A. (1972). Cephalopods and fish: the limits ofconvergence. Biological Reviews 47, 241–307.


Shashar N. and T.W. Cronin 1996. Polarization contrast vision in Octopus. Journal of Experimental Biology. 199 : pp.999-1004.

Waterman, T. H. (1981). Polarization sensitivity. In: H. Autrum, Handbook of sensory physiology, vol. VII/6B: Comparative physiology and evolution of Vision in invertebrates. B: Invertebrate Visual centers and behavior I. (pp. 281–463). Berlin: Springer-Verlag.


Waterman, T. (1988). Polarization of marine light fields and animal orientation. Soc. Photo. Opt. Instrum. Ocean Optics 9:925, 431-437.


Wehner, R. (2001). Polarization vision – a uniform sensory capacity? J. Exp. Biol. 204, 2589-2596.


MECHANISM:

Allen, J. J., Mäthger, L. M., Barbosa, A., & Hanlon, R. T. (2009). Cuttlefish use visual cues to control three-dimensional skin papillae for camouflage. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 195(6), 547–55.

Barbosa, A., Mäthger, L. M., Chubb, C., Florio, C., Chiao, C.-C., & Hanlon, R. T. (2007). Disruptive coloration in cuttlefish: a visual perception mechanism that regulates ontogenetic adjustment of skin patterning. The Journal of Experimental Biology, 210.

Bellingham, J., Morris, A. G. and Hunt, D. M. (1998). The rhodopsin gene of the cuttlefish Sepia officinalis: sequence and spectral tuning. J. Exp. Biol. 201, 2299- 2306.


Boycott, B. B. (1953). The chromatophore system of cephalopods. Proc. Linn. Soc. Land. 164, 235-240.

Boycott, B. B. (1961). The functional organization of the brain of the cuttlefish Sepia officinalis. Proc. R. Soc. 153, 503-534.

Brown, P. K. and Brown, P. S. (1958). Visual pigments of the octopus and cuttlefish. Nature 182, 1288-1290.


Chiao, C.-C., Chubb, C., Buresch, K. C., Barbosa, A., Allen, J. J., Mäthger, L. M., & Hanlon, R. T. (2010). Mottle camouflage patterns in cuttlefish: quantitative characterization and visual background stimuli that evoke them. The Journal of Experimental Biology, 213(2), 187–99.

Chiao, T.-H., Mäthger, L. M., Hanlon, R. T., & Cronin, T. W. (2007). Spectral and spatial properties of polarized light reflections from the arms of squid (Loligo pealeii) and cuttlefish (Sepia officinalis L.). The Journal of Experimental Biology, 210(Pt 20), 3624–35.


Cloney, R.A., Brocco, S.L. (1983). Chromatophore Organs, Reflector Cells, Iridocytes and Leucophores in Cephalopods. Amer. Zool. 23(3): 581-192.


Devari, L.F., Magyar, A.P., Sheehy, S.P., Bell, G.R.R., Mathger, L.M., Senft, S.L., Wardill, T.J., Lane, W.S., Kuzirian, A.M., Hanlon, R.T., Hu, E.L. Parker, K.K. (2014). The structure–function relationships of a natural nanoscale photonic device in cuttlefish chromatophores. Journal of the Royal Society Interface 11, 93.

Hill, A. V. & Solandt, D. Y. (1935) Myograms from the chromatophores of Sepia. J. Physiol. 83, 13-14.

Florey, E. & Kriebel, M. E. (1969). Electrical and mechanical responses of chromatophore muscle fibres of the squid, Loligo opalescens, to nerve stimulation and drugs. Physiologie 65, 98±130.

Hanlon, R. T. (1982). The functional organization of chromatophores and iridescent cells in the body patterning of Loligo plei (Cephalopoda: Myopsida). Malacologia 23, 89±119.

Hanlon, R. T. 2007 Cephalopod dynamic camouflage. Curr. Biol. 17. 400–404.

Hanlon, R.T., Messenger, J.B. (1988). Adaptive coloration in young cuttlefish (Sepia officinalis L.): The morphology and development of body patterns and their relation to behaviour. Phil. Trans. R. Soc. Lond. B 320: 437-487.

Mäthger, L. M., Barbosa, A., Miner, S., & Hanlon, R. T. (2006). Color blindness and contrast perception in cuttlefish (Sepia officinalis) determined by a visual sensorimotor assay. Vision Research, 46(11), 1746–53. doi:10.1016/j.visres.2005.09.035

Mäthger, L. M., & Hanlon, R. T. (2007). Malleable skin coloration in cephalopods: selective reflectance, transmission and absorbance of light by chromatophores and iridophores. Cell and Tissue Research, 329(1), 179–86.

Marshall, N. J. & Messenger, J. B. 1996 Colour-blind camouflage. Nature 382,408–409

Messenger, J. B. (1981). Comparative physiology of vision in molluscs. In Handbook of Sensory Physiology, Vol. VII}6C: Comparative Physiology and Evolution of Vision in Invertebrates (ed. H. Autrum), pp. 93±200. Springer, Berlin, Heidelberg, New York.

Messenger, J. B. (2001). Cephalopod chromatophores: neurobiology and natural history. Biological Reviews, 76(4), 473–528.

Miyan, J. A., Plymouth, T., Hanlon, R. T., & Messenger, J. B. (1986). Short Communication: Neural Correlates of Colour Change in Cuttlefish, 400, 395–400.

Schafer, W. 1937 Bau, Entwicklung und Farbentstehung bei den Flitterzellen von
Sepia officinalis. Z. Zellforsch 27, 222–245.

Shashar N. and T.W. Cronin 1996. Polarization contrast vision in Octopus. Journal of Experimental Biology. 199 : pp.999-1004.

Shashar N., Rutledge P.S. and T.W. Cronin 1996. Polarization vision in cuttlefish- a concealed communication channel. Journal of Experimental Biology. 199 : pp.2077-2084

Shohet, A. J., Baddeley, R. J., Anderson, J. C., Kelman, E. J., & Osorio, D. (2006). Cuttlefish responses to visual orientation of substrates, water flow and a model of motion camouflage. Journal of Experimental Biology, 209 (23), 4717–4723.

Taskai, K. & Karita, K. 1966. Discrimination of horizontal and vertical planes of polarized light by cephalopod retina. Jap. J. Physiol. 16, 205-216.

Williams, L. (1909). The Anatomy of the Common Squid, Loligo pealii. Leiden, Holland: E. J. Brill.

ONTOGENY:

Buresi, A., Croll, R. P., Tiozzo, S., Bonnaud, L., & Baratte, S. (2014). Emergence of sensory structures in the developing epidermis in sepia officinalis and other coleoid cephalopods. Journal of Comparative Neurology, 522(13), 3004–3019.

Darmaillacq, A.-S., Lesimple, C., & Dickel, L. (2008). Embryonic visual learning in the cuttlefish, Sepia officinalis. Animal Behaviour. doi:10.1016/j.anbehav.2008.02.006

Gauvrit, E., LeGoff, R., & Daguzan, J. (1997). Reproductive cycle of the cuttlefish, Sepia officinalis (L) in the northern part of the Bay of Biscay. Journal of Molluscan Studies, 63, 19–28. doi:10.1093/mollus/63.1.19

Jozet-Alves, C., Viblanc, V. A., Romagny, S., Dacher, M., Healy, S. D., & Dickel, L. (2012). Visual lateralization is task and age dependent in cuttlefish, Sepia officinalis. Animal Behaviour, 83(6), 1313–1318.

Lee, Y.-H., Yan, H. Y., & Chiao, C.-C. (2010). Visual contrast modulates maturation of camouflage body patterning in cuttlefish (Sepia pharaonis). Journal of Comparative Psychology, 124(3), 261–270.

Poirier, R., Chichery, R., & Dickel, L. (2005). Early experience and postembryonic maturation of body patterns in cuttlefish (Sepia officinalis). Journal of Comparative Psychology, 119(2), 230–237.

Robin, J. P., Roberts, M., Zeidberg, L., Bloor, I., Rodriguez, A., Briceño, F., … Mather, J. (2014). Transitions during cephalopod life history: The role of habitat, environment, functional morphology and behaviour. Advances in Marine Biology, 67, 361–437.

Romagny, S., Darmaillacq, A.-S., Guibé, M., Bellanger, C., & Dickel, L. (2012). Feel, smell and see in an egg: emergence of perception and learning in an immature invertebrate, the cuttlefish embryo. The Journal of Experimental Biology, 215(Pt 23), 4125–30. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23136152

ADAPTIVE VALUE:

Hanlon, R. T., Naud, M.-J., Forsythe, J. W., Hall, K., Watson, A. C., & McKechnie, J. (2007). Adaptable night camouflage by cuttlefish. The American Naturalist, 169, 543–551. doi:10.1086/512106

Langridge, K. V. (2009). Cuttlefish use startle displays, but not against large predators. Animal Behaviour, 77, 847–856. doi:10.1016/j.anbehav.2008.11.023

Norman, M. D., Finn, J., & Tregenza, T. (1999). Female impersonation as an alternative reproductive strategy in giant cuttlefish. Proceedings of the Royal Society B: Biological Sciences, 266, 1347. doi:10.1098/rspb.1999.0786

Stuart-Fox, D., & Moussalli, A. (2009). Camouflage, communication and thermoregulation: lessons from colour changing organisms. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364, 463–470. doi:10.1098/rstb.2008.0254