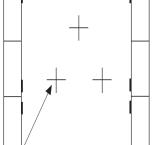
LECTURE GOALS:

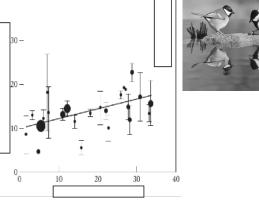
- \Box Behavior as phenotype that can evolve (i.e. has a genetic basis).
- $\hfill\square$ Understand the difference between "heritability" and "inherited"
- □ Understand Genotype-by-Environment interactions (GXE)

LECTURE OUTLINE:

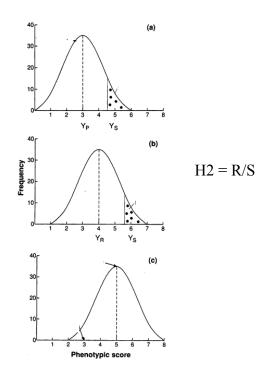
- 1. Tinbergen encouraged us to consider behavior as a phenotype that was the result of natural selection.
- 2. The observed phenotype is the result of both the influence of genes and the influence of the environment.
- 3. Historically, there were two approaches to behavioral genetics which are now more closely unified in part due to advances in genetic/genomic tools.
 - a. single gene white lab coat behavior
 - b. quantitative rubber boot behavior
- 4. All forms of behavioral genetics rely on good reproducible behavioral assays.
- 5. Examples of the single gene approach include circadian behavior, taxis behaviors, and courtship.
- 6. Examples of the quantitative approach in Drosophila include foraging behavior, aggression, courtship.
- 7. The quantitative approach has also been applied to many other organisms and behaviors including cricket song, burrow building in mice, tameness in foxes etc.
- 8. The goal of behavioral genetics is to determine the genetic contribution to behaviors.
- 9. Heritability is the proportion of phenotypic variation in a population in a given environment that is due to genetic variation between individuals.
- 10. Many phenotypes that have a strong genetic component may have low heritability if there is little genetic variance in the observed population.
- 11. Research tools to demonstrate/quantify heritability of a behavioral phenotype.
 - a. Pedigree Analysis
 - b. Parent/Offspring regression slope = heritability
 - c. Cross Fostering
 - d. Artificial selection heritability = Response/Selection
- 12. Genes and Environment interact!

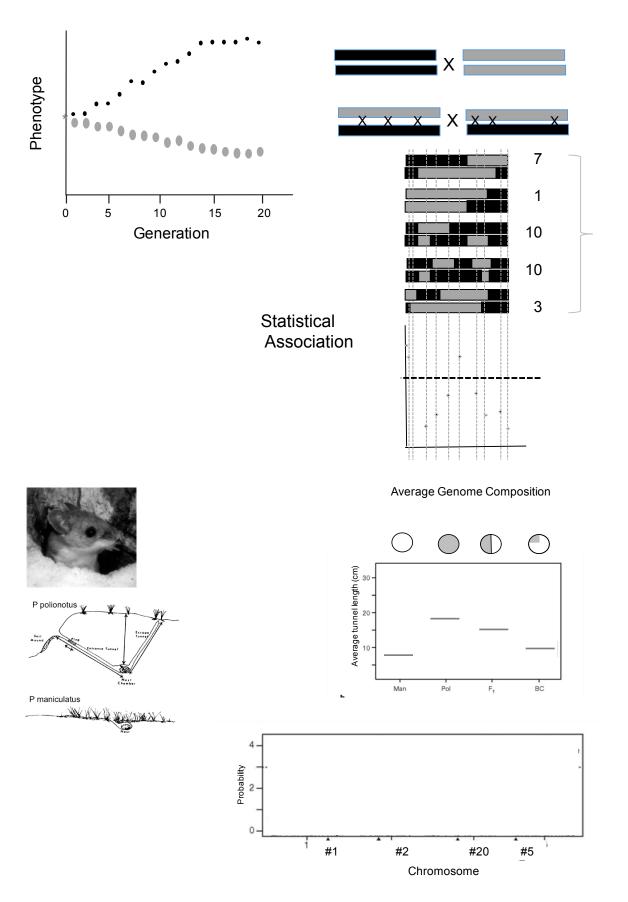

HELPFUL FIGURES & NOTES:

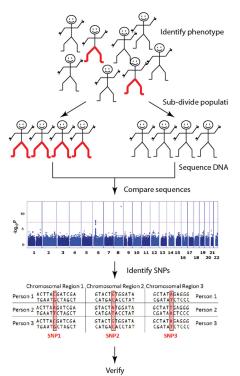
(All PowerPoint files will be available on the courses server after lecture. The subset of figures and notes here are meant to assist your note taking or studying.)

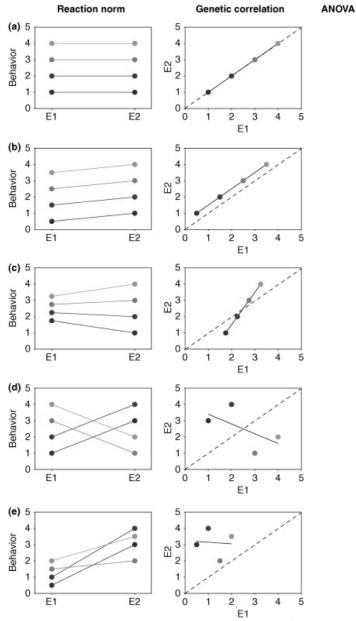

GOAL:

Genes that are neo Single Gene	cessary for:
	Historic figure
	Immediate goals
	Raw Materials used
	Tools used
	Type of Result


Genotype	aabb	Aabb	AAbb	AABb	AABB	 AaBb aaBb
 Additive effect Phenotypic score Dominance effect Phenotypic score Dominance plus epistatic effect Phenotypic score 						
		40 30 - 20 -	T T	-		




¥



TRENDS in Genetics

(Practice writing interesting, informative sentences that include, and capture the meaning of, 4-5 words from this list. To simply memorize a definition, is not sufficient.)

Heritability	Pleiotropic
Inherited	Quantitative Genetics
GXE	QTL
Dominant	Genetic Marker
Recessive	Forward genetics
Epistatic	Reverse genetics

PRACTICE EXAM QUESTIONS:

- 1. What observations or experiments can be used to partition phenotypic variance into its genetic and environmental components?
- 2. Why is it wrong to say "the gene for behavior X"?

READING FOR TODAY:

Byers Chapter 8 Population Genetics/Quantitative Genetics chapter (available on course website)

READING FOR THURSDAY: R&W Chapter 8

Okhovat M, Berrio A, Wallace G, Ophir A, Phelps SM (2015) Sexual fidelity trade-offs promote regulatory variation in the prairie vole brain. Science 350: 1371-1374. (be prepared to explain figures, discuss results etc)

Donaldson ZR and Young LJ (2008) Oxytocin, Vasopressin, and the Neurogenetics of Sociality. *Science* 322:900-904.

Facality Millions		
Frankie Williams		Eve Marder
Sol Taylor-Brill	Michael Meaney	Allison Doupe
Senta Wiederhol		Annaliese Beery
Susa Oram	Catherine Carr	Frans de Waal
Avantika Vivek	Annaliese Beery	Eve Marder
Noah Radetsky	Daphne Soares	Myron (Mike) Baker
Ari Coester	Michael Meaney	Karen Warkentin
Isaac Schumann	Catherine Carr	Emily Duval
Alec Lobnitz	Vanessa Ezenwa	Katherine Dulac
Julia Yuan	Annaliese Beery	Vanessa Ezenwa
Lenny Blair	Allison Doupe	Jim Goodson
Celia Morell	Katherine Dulac	sapolsky
Gabe Preising	Vanessa Ezenwa	Daphne Soares
TYLER	Marlene Zuk	Justin Rhodes
Xochitl Berns	Kerry Shaw	Ellen Ketterson
Luke Steiger	Myron (Mike) Bak	Vanessa Ezenwa
Eli Sobel	Katherine Dulac	Myron (Mike) Baker
Xavier Gonzalez	Myron (Mike) Bak	Frans de Waal
Ashlee Cook	sapolsky	Catherine Carr
Amy Rose Lazar	Judy Stamps	Michael Meaney
Natasha Baas-Th	Eve Marder	Catherine Carr
Miriam Bern	Frans de Waal	Katherine Dulac
Sammi Goldberg	Frans de Waal	Michael Meaney
Andrew Harman	Allison Doupe	Daphne Soares
Sophia Bruno	Jim Goodson	Annaliese Beery
Eva Licht	Daphne Soares	Allison Doupe
Olivia Dao	Justin Rhodes	Marlene Zuk
David Snower	Karen Warkentin	Judy Stamps
Justyne Wyer	Ellen Ketterson	Emily Duval
Maddy Doak	Eve Marder	Kerry Shaw

Each student will review 2 websites (assignments left).

Put the name of the Researcher at top left of the page

Put your own name at top right of the page

Answer the following questions

Bring a hard copy of each review (separate pages so they can be handed back to the authors) to class by Tuesday Nov 13th) (typed or hand written is OK)

Content

- 1. In your own words, describe the data figures that are presented on this Blog/website?
- 2. What important area of animal behavior do these data represent?
- 3. In your own words, why are these results/interpretations an important contribution to the field?
- 4. If you find the above questions difficult to answer, provide recommendation about how the student author(s) could improve information transfer in their blog/website.

Style

- 1. Would you suggest alternate headings to the different subsections that might be more informative about the content of those sections?
- 2. Are there additional types of figures that you would like to see included in the blog/website?
- 3. Though the assignment is not about stylistic web design, what aspects of the website/blog are the most effective?
- 4. Though the assignment is not about stylistic web design, what aspects of the website/blog are the least effective?

NAME

rst Author	year:	
tle:		
urnal	Vol pages	
rganism:		

What approaches did they use (quantitative, candidate gene, forward, reverse etc.):

Description of the genetic findings: