Vaux’ s swift

Evening Field Trip
Sept. 19" (Wednesday)

sunset7:13
depart Reed 6:30 (w/pizza)

Chapman School
27th Ave NW and Pettygrove

Van drivers?

http://www.audubonportland.org/livingwithwildlife/brochures/VauxsSwifts




Delay Line Theory: Spatial and Temporal Summation




To higher processing center
(optic tectum)

Delay Line Theory: Spatial and Temporal Summation
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Erampt)

Norepinephrine
Amino acids with OH
modified groups
(e.g. norepinephrine’s
carboxyl group is
replaced with a
benzene ring)

Amine Hormone

Short chains of linked

Peptide Hormone X R
amino acids

Long chains of linked

Protein Hormone 2 P
amino acids

Testosterone

Derived from the

Steroid Hormones lipid cholesterol

By OpenStax College - Anatomy & Physiology, Connexions Web site.
http://cnx.org/content/col11496/1.6/, Jun 19, 2013., CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=30148134
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Neural, not gonadal, origin of brain sex differences in a gynandromorphic finch

Robert J. Agate, William Grisham, Juli Wade, Suzanne Mann, John Wingfield, Carolyn Schanen,
Aarno Palotie, and Arthur P. Arnold

PNAS 2003;100;4873-4878; originally published online Apr 2, 2003;
doi:10.1073/pnas.0636925100
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Figure 1. Color enhancement alters andro-
gen levels and body mass of male barn
swallows.
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Goal Directed Behavior

Wallace Craig model (1900)

Appetitive behaviors “drive” an
iIndividual towards a goal, e.g.
foraging (hunger = drive).
Consumatory behaviors satisfy a
drive. e.g. feeding

Aversion occurs once a drive is
satisfied.

without stimulus behavior is reset.

Modulation
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PROCEEDINGS OF THE IRE November

What the Frog’s Eye Tells the Frog’s Brain”

J. Y. LETTVINt, H. R. MATURANAY, W. S. McCULLOCH]||, SENIOR MEMBER, IRE,
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Optimal Foraging

 How to do you divide your time between more and
less profitable prey?

* To make it simple, assume there is a one type of
profitable and one type of unprofitable prey.

« Should you be a generalist and eat both, or a
specialist and eat only the more profitable prey?




Optimal Foraging: lets build a model

 How much is each prey worth?  (E) (benefit)
* What are the costs of obtaining it ?(T) (cost = time)
 What do you want to maximize? (E/T)

— benefits as a function of costs

« So then we need to calculate the benefits and the

costs to any food encounter.




Optimal Foraging: calculating E/T

* Prey 1 is more profitable, & Prey 2 less profitable
- (B> Ey)

* They are encountered at different rates (A4, A,)

* |t takes different handling time (H4, Hy).

* Predators search for prey for a certain amount of
time (S)




For generalist: E = S(AE; + AE))
T =S8+ (SAH; + AH)))

For specialist. E = SA/E;
=S+ SAH,;

(E,H,/ E,) - H1 > 1/,
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Krubitzer et al., 1995
Star-nosed mole
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Raccoon
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Welker and Seidenstein, 1959
H 197
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Henry et al., 2006

. Specialized body part representation in S1
|:| Specialized body part representation in other areas

|:| Other body part representations in S1

FIGURE 7 | Examples of extreme cortical magnification of behaviorally
relevant effectors for somatosensory cortex of the duck-billed platypus
(A), star-nosed mole (B), raccoon (C), and naked mole-rat (D). Although
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Star Nosed Mole

Profitability

Small Prey
(10 Joules)

2345 10 20
Handling Time (sec)
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h _
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Catania & Remple Science 2005
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Star-nose mole
is a generalist




OTHER TRICKS WITH A STAR




Worm Grunting

“It has often been said that if the ground is beaten or otherwise
made to tremble, worms believe that they are pursued by a
mole and leave their burrows.” . . .

“Nevertheless, worms do not invariably leave their
burrows when the ground is made to tremble, as | know from

having beaten it with a spade, but perhaps it was beaten too
o T R violently”.
!i " ViAW

Darwin C (1881) The Formation of Vegetable Mould Through The Action Of Worms With
Observations On Their Habits. (Reprint,2002). McLean
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