Vaux's swift

Evening Field Trip Sept. 19th (Wednesday)

sunset 7:13 <mark>depart Reed 6:30</mark> (w/pizza)

Chapman School 27th Ave NW and Pettygrove

Van drivers?

http://www.audubonportland.org/livingwithwildlife/brochures/VauxsSwifts

Delay Line Theory: Spatial and Temporal Summation

What did you learn last Thursday?

Plasticity : requires protein synthesis

Exocrine (allocrine) - released

Actually different animals For E and T adult injections

Testosterone

Estrogen

Robert J. Agate, William Grisham, Juli Wade, Suzanne Mann, John Wingfield, Carolyn Schanen, Aarno Palotie, and Arthur P. Arnold

> PNAS 2003;100;4873-4878; originally published online Apr 2, 2003; doi:10.1073/pnas.0636925100

Male coloration

Testes

No female (W) Chromosome

HVC nuclues

Female coloration

Ovaries

Female (W) Chromosome

NO HVC nuclues

ZZ

organizational

activational

Timescales

development

plasticity

modulation

Sexual signal exaggeration affects physiological state in male barn swallows

Rebecca J. Safran^{1,2,*}, James S. Adelman¹, Kevin J. McGraw³, and Michaela Hau¹

Goal Directed Behavior

- Wallace Craig model (1900)
- Appetitive behaviors "drive" an individual towards a goal, e.g. foraging (hunger = drive).
- Consumatory behaviors satisfy a drive. e.g. feeding
- Aversion occurs once a drive is satisfied.
- without stimulus behavior is reset.

PROCEEDINGS OF THE IRE

November

What the Frog's Eye Tells the Frog's Brain*

J. Y. LETTVIN†, H. R. MATURANA‡, W. S. McCulloch||, senior member, ire, and W. H. PITTS||

"feature detectors" to process stimuli

Optimal Foraging

- How to do you divide your time between more and less profitable prey?
- To make it simple, assume there is a one type of profitable and one type of unprofitable prey.
- Should you be a generalist and eat both, or a specialist and eat only the more profitable prey?

Optimal Foraging: lets build a model

- How much is each prey worth? (E) (benefit)
- What are the costs of obtaining it ?(T) (cost = time)
- What do you want to maximize? (E/T)
 - benefits as a function of costs
- So then we need to calculate the benefits and the costs to any food encounter.

Optimal Foraging: calculating E/T

- Prey 1 is more profitable, & Prey 2 less profitable

 (E₁> E₂)
- They are encountered at different rates (λ_1, λ_2)
- It takes different handling time (H_1, H_2) .
- Predators search for prey for a certain amount of time

For generalist: $E = S(\lambda_1 E_1 + \lambda_2 E_2)$ $T = S + (S(\lambda_1 H_1 + \lambda_2 H_2))$

For specialist: $E = S\lambda_1E_1$ $T = S + S\lambda_1H_1$

 $(E_1H_2/E_2) - H1 > 1\lambda_1$

be a specialist when encounter rate for profitable prey is high but notice λ_2 has dropped out of the equation. It doesn't matter what the ratio of the two items is, only the abundance of the profitable prey.

Star-nose mole

Eastern mole

Star Nosed Mole

Catania & Remple Science 2005

Double take

STATUS NCCE RECORD FRAME # TIME OF FRAME EVENT NUMBER 321 SETUP F/SEC RECORD 500 SHUTTER SPEED 5 TRIGGER POINT 0072 SEC PLAY 5

Star-nose mole is a generalist

OTHER TRICKS WITH A STAR

Worm Grunting

"It has often been said that if the ground is beaten or otherwise made to tremble, worms believe that they are pursued by a mole and leave their burrows." . . .

"Nevertheless, worms do not invariably leave their burrows when the ground is made to tremble, as I know from having beaten it with a spade, but perhaps it was beaten too violently".

Darwin C (1881) *The Formation of Vegetable Mould Through The Action Of Worms With Observations On Their Habits.* (Reprint, 2002). McLean

(Catania, 2008, PLoS ONE)