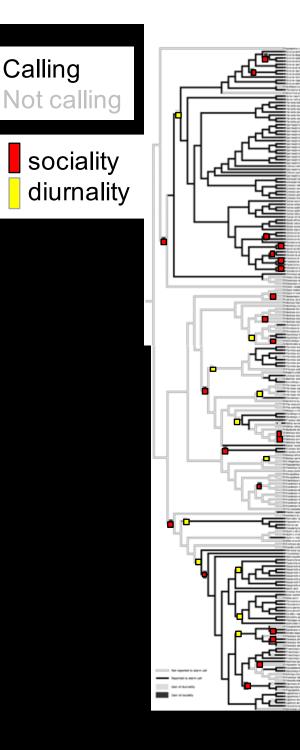


rB>C (0.42)(6.1) > 0.9 2.56 > 0.9

www.alamy.com - BFGMX9

Kin selection and cooperative courtship in

wild turkeys


Alan H. Krakauer 🔤

434, 69–72 (03 March 2005) | Download Citatio

Variable	Description	Calculation	Value*
r	Coefficient of relatedness	Mean pairwise relatedness of subordinates to their dominant display partner	0.42
B†	Benefit to dominant	(No. of offspring per dominant male) – (no. of offspring per solo male)	6.1 (9.0)
C†	Cost to subordinate	(No. of offspring per solo male)- (no. of offspring per subordinate male)	0.9 (2.3)
	Net benefit†	rB – C	+1.7(1.5)

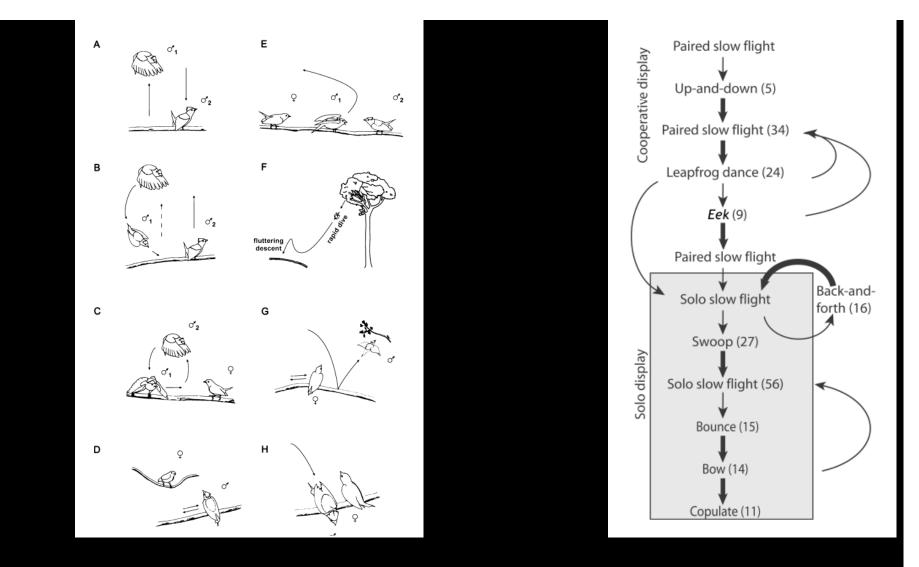
Dominant, solo and subordinate refer to dominant coalition males, solitary non-cooperating males and subordinate male helpers, respectively.

*Values in parentheses exclude non-reproducing males from mean fitness calculations. † In units of offspring per male.

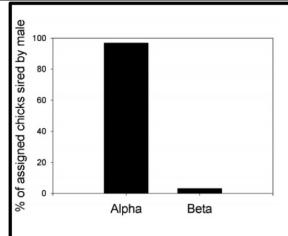
"If calling evolved to have a conspecific alarming function then we would expect that the evolution of sociality would precede the evolution of calling"


"If calling evolved to be directed toward predators, we assumed that individuals would do so when they were relatively safe (not in the dark where it is difficult to assess predation risk)... and evolution of diurnality would precede the evolution of calling"

Consider Alternate Hypotheses The answer to a phylogenetic question may differ from the answer to a question about Adaptive Value.


Shelly and Blumstein 2005 marmot calls

Provide three alternative hypotheses that could explain this behavior could evolve through Natural Selection.



DuVal E.H. (2007) The Auk 124 (4): 1168-1185.

Figure A. Duet pair of male lance tail manakins. Alphabeta partners display

Figure. C Genetic test quantified the reproductive success males in different status classes. Of 63 chicks for which paternity could be assigned, all but two (97%) were sired by alpha males.

Direct Benefit? Selfish

DuVal E.H. (2007) The Auk 124 (4): 1168-1185.

Figure A. Duet pair of male lance tail manakins. Alphabeta partners display

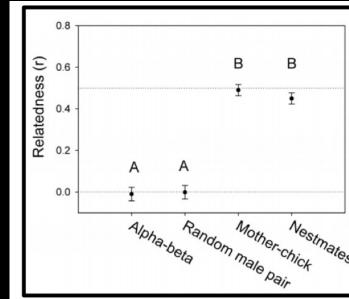


Figure. B Mean relatedness values of observed alpha-beta partners. Dotted lines indicate expected average r for full siblings or parent-offspring comparisons (0.5) and unrelated individuals (0). Bars indicate standard errors. Common letters denote groups that are not statistically different in relatedness but are significantly different from groups marked by different letters

Indirect Benefit? Selfish

DuVal E.H. (2007) The Auk 124 (4): 1168-1185.

Figure A. Duet pair of male lance tail manakins. Alphabeta partners display

	Year 2 alpha	Year 2 non- alpha	Table 1. Table indicating year 2 number of
Year 1 beta	15	35	year 1 beta and non-dancing males that had
Year 1 non- dancing male	5	145	transitioned to dancing alpha males with territory.

Delayed Benefit Selfish

Duval (2013) Journal of Animal Ecology, 82, 884-893

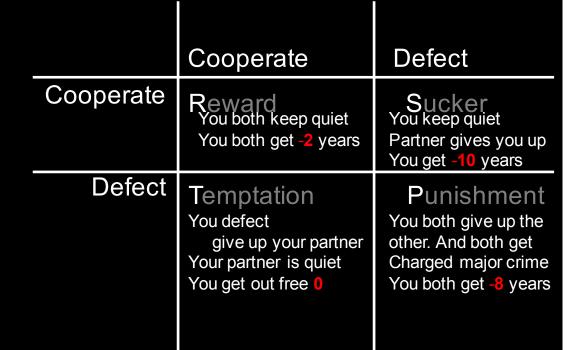
Cooperation

(reciprocity)

Selfish Herd

Mutualism

Prisoner's Dilemma


T>R>P>S (T+S)/2<R

-2 years for the minor crime
-8 years for the major crime

http://bio150.chass.utoronto.ca/pdgame/index.html

W.D. Hamilton

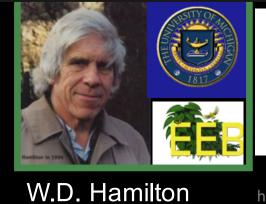
The Evolution of Cooperation

Robert Axelrod; William D. Hamilton

Science, New Series, Vol. 211, No. 4489. (Mar. 27, 1981)

Political Science

Robert Axelrod



	Cooperate	Defect
Cooperate	R 2	S ()
Defect	T 3	P 1

Prisoner's Dilemma

T>R>P>S (T+S)/2<R

http://bio150.chass.utoronto.ca/pdgame/index.html

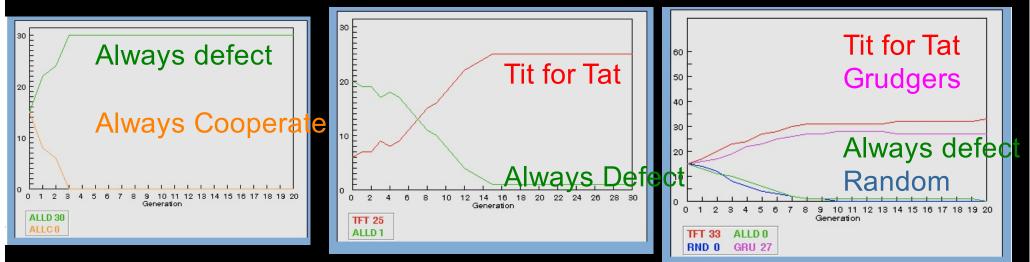
The Evolution of Cooperation

Robert Axelrod; William D. Hamilton

Science, New Series, Vol. 211, No. 4489. (Mar. 27, 1981)

Political Science

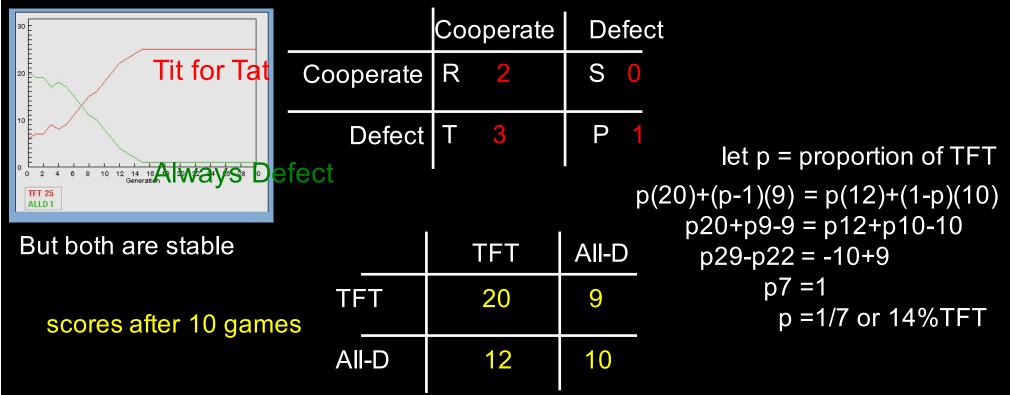
http://sites.sinauer.com/animalcommunication2e/chapter13.01.html


Robert Axelrod

ALTERNATE: Alternate between C and D, starting with a C. **ALWAYS COOPERATE:** always play C, (Also known as sucker). **ALWAYS DEFECT:** always play **D.** (Also known as cheat). **GRUDGER:** Start with C & continue C until partner plays D. Then D til the end. **RANDOM:** The player chooses either C or D with equal probability. **TIT FOR TAT:** Start with C & play whatever partner did in the previous move NAÏVE PROBER: Start with C and then play whatever its partner plays previously. However, randomly play D. TIT FOR TWO TATS: Start with 2 Cs. If partner plays 2 Ds then D, otherwise C. TWO TITS FOR TAT: Starts with C, if partner plays D then D for 2 moves. Otherwise C REMOURSEFUL PROBER: Start with C and play whatever partner played previously.

However, randomly play D, allow one free hit if partner's D was in response to the random D

Strategies for Prisoner's D	Cooperate	Defect	
	Cooperate	R 2	S O
Pick your favorite color and play that strategy against a neighbor for 10 rounds	Defect	Τ 3	P 1


ESS depends upon participating strategies (the current social environment)

But both are stable

http://bio150.chass.utoronto.ca/pdgame/index.html http://ncase.me/trust/

ESS depends upon participating strategies

"the knife's edge"

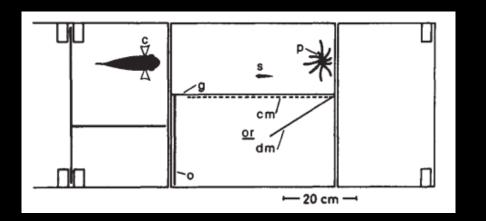
	Cooperate	Defect
Cooperate (groom)	Reward Takes me 2 hours To groom you But save me 8 hours Grooming myself = +6	Sucker Takes me 2 hours To groom you I still spend 8 hours Grooming myself = -10
Defect (flake out)	Temptation I don't waste 2 hours grooming you And I save 8 hours not grooming myself = +8	Punishment I don't waste 2 hour grooming you I still spend 8 hours grooming myself = -8
T > R > P > S +8 > +6 > -8 > -10	<mark>& (T+S))/2<r< mark=""> & (+8+-10)/2 <+6 −1<+6</r<></mark>	

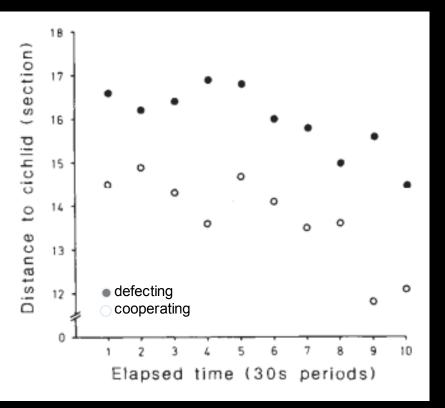
Cost Benefit in Nature?

	Cooperate	Defect
Cooperate	Reward - fairly good	Sucker- Very Bad
	I get blood on my unlucky nights	I pay the cost of saving your
	which saves me form starving. I	life on my good night. But on
	have to give blood on my lucky	my bad night you don't feed
	nights which doesn't cost too	me and I run the risk of
	much.	starving.
Defect	Temptation -Very Good	Punishment - fairly bad
	You save my life on my unlucky	I don't have to pay the slight
	nights. but then I get the added	costs of feeding you but I don't
	benefit of not paying the slight	get the benefit of food when I
	cost of feeding you on my lucky	desperately need it.
	nights.	

T > R > P > S & (T+S))/2 < R

Cost Benefit in Nature?


	Cooperate	Defect
Cooperate (move forward)	R	S
► 20 cm → Defect (hang back)	Т	Ρ
T>R a trailing fish learns attack distance w/o risk R>P if both hang back they don't learn attack distance P>S if leader gets to close it gets eaten if closer (S)		


R> (S+T)/2 either cooperating fish can learn attack distance and risk is reduced by herd

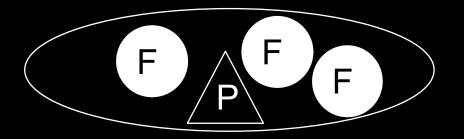
NATURE VOL. 325 29 JANUARY 1987

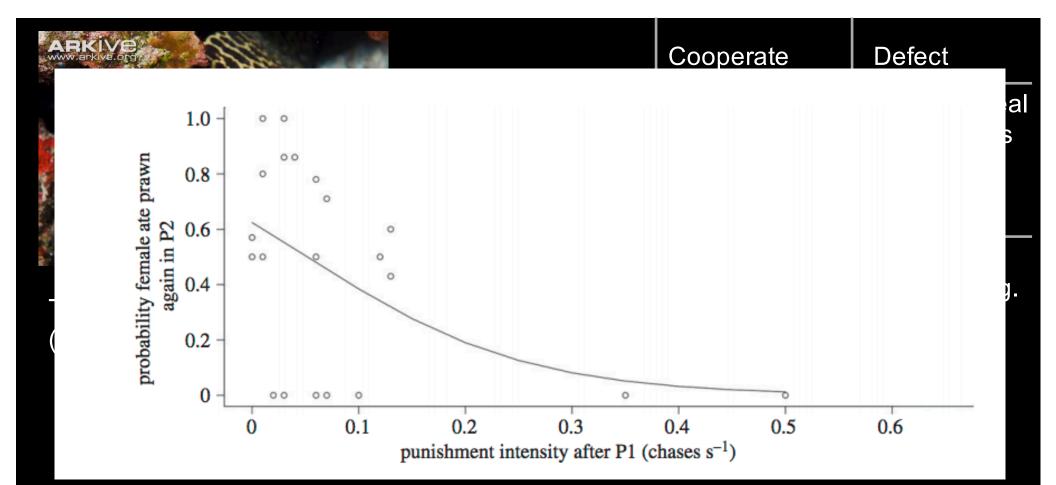
TIT FOR TAT in sticklebacks and the evolution of cooperation

Manfred Milinski

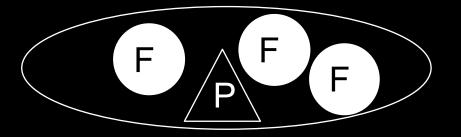
NATURE VOL. 325 29 JANUARY 1987

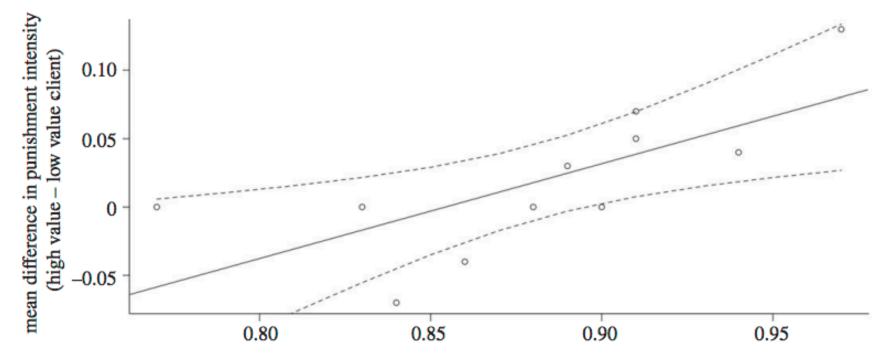
TIT FOR TAT in sticklebacks and the evolution of cooperation


Manfred Milinski

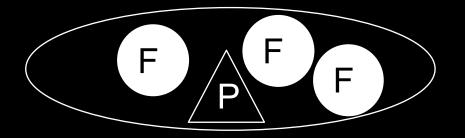

T>R>P>S ??? (T+S)/2<R

	Cooperate	Defect
Cooperate (eat only parasites)	R = feeding	S = no meal client leaves
Defect (bite the client)	T = big meal	$P = \frac{1}{2}$ big Meal on avg.


Payoff matrix is enforced by added cost of punishment within the "cooperating pair"


Raihani et al 2012 Proc. R. Soc. B 279:365-370

Payoff matrix is enforced by added cost of punishment within the "cooperating pair"



Raihani et al 2012 Proc. R. Soc. B 279:365-370

relative female size (female length/male length)

Payoff matrix is enforced by added cost of punishment within the "cooperating pair"

Raihani et al 2012 Proc. R. Soc. B 279:365-370

Subconscious Bias another form of Anthropomorphism

Ethograms should be:

- Objective
- Quantifiable
- Devoid of Intent
- Devoid of anthropomorphism

Described by:

- Structure
- Spatial orientation
- Consequence (automated)

Units of behavior?

Animation from: Heider, F. & Simmel, M. (1944). An experimental study of apparant behavior. American Journal of Psychology, 57, 243-259.

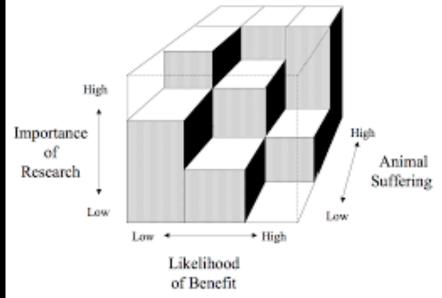
> Courtesy of: Department of Psychology. University of Herman, Lawrence.

Mice as research subjects

The "value" attached to the life or welfare of an animal is a social construct.

Mice as pests

Mice as food



How worth while is the research?

What is the probability of success and benefit from the research?

How much suffering will the experiment cause to the animal?

There was confusing in lecture (my fault) because I hadn't carefully read the last line

"The solid part of the cube represents work that would be deemed unacceptable"

Ethical Considerations

IACUC CENTRAL

IACUC.org is now **IACUC Central**, a comprehensive repository for all things IACUC. IACUC Central is a valuable resource for institutional animal care and use committee members and staff. Updated quarterly, IACUC Central organizes information into pages containing links to governmental agencies, databases, examples of institutional websites, training resources, and more.

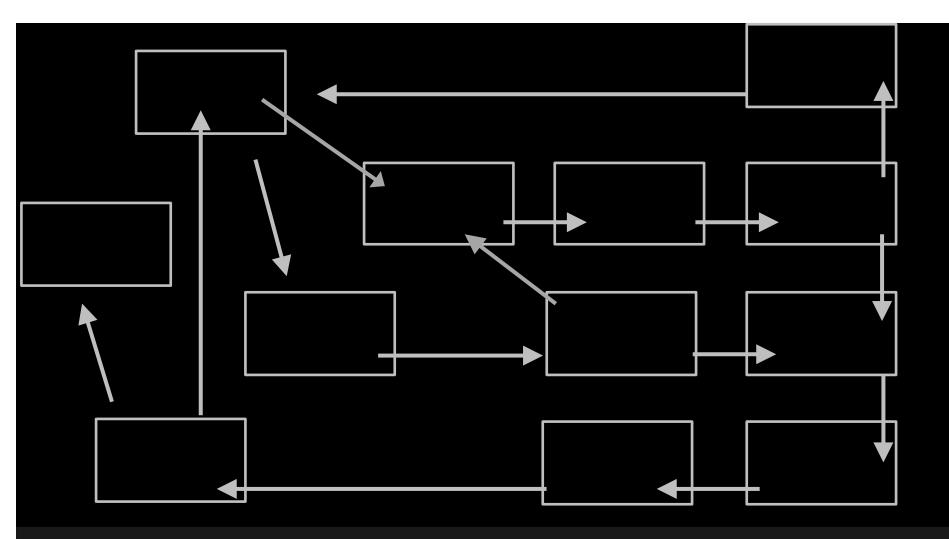
Adaptive Cost Gauging

International Animal Care and Use Committee

Refinement:

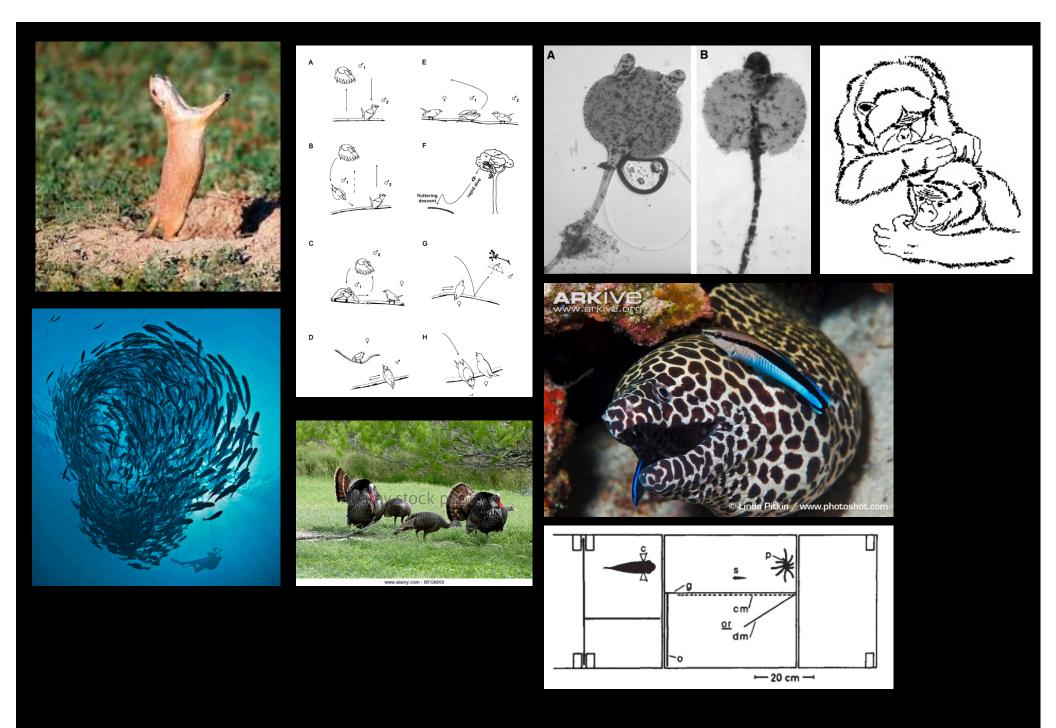
use of non-invasive methods short term manipulations improved husbandry

Replacement: use of non-animal models


Reduction: use fewer animals -more focused -model organisms > resources < variability What choices do you have to make to design an experiment? (regardless of hypothesis)

How do you choose an organism to study?

Lab Based researchProCon


Field Based researchProCon

Experimental vs. observational

- Ask the question
- Make preliminary observations
- Identify the variables
- Choose a recording method
- Collect and analyze data
- Formulate a hypotheses

- Make predictions based on the hypothesis
- Design experiments to test the hypothesis
- Conduct the experimental tests
- Consider alternate hypotheses
- Share your findings

What do all of these instances of cooperation or apparent altruism have in common?

(Level) of question

Timeframe of study

	Snap shot: An explanation of the current form of a behavior in terms of present-day	Story: An explanation of the current form of the behavior in terms of a sequence
nov): in terms of ors, relevant and isurable in current	Mechanism (a.k.a. causation) Causal explanations in terms of what the behavior is and how the behavior is constructed. These	Ontogeny (a.k.a. development) Developmental explanations for sequential changes across the lifespan of an individual.
Proximate (I An explanation immediate fact potentially mea time.	explanations can include physical morphology, molecular mechanisms or other underlying biological factors Aristotle: material cause	Often these explanations are concerned with the degree to which the behavior can be changed through learning. Aristotle: formal cause
vhy) on in terms of the forces of evolution.	Adaptive Value (a.k.a. function or survival value)	Phylogeny (a.k.a. evolution) Evolutionary explanations that
Ultimate (why) An explanation in te process and forces	Functional explanations regarding the utility of the current form of the behavior with regard to increasing an organisms lifetime reproductive success. Aristotle: final cause	describe the history of the behavior, such as which ancestor first possessed this trait, what was the antecedent to this behavior, and what selective pressures in the past have shaped this behavior. Aristotle: efficient cause

(Level) of questior

An explanation in terms of the

evant and Proximate (how): An explanation in terms of factors, rel

measurable in current mmediate [.] ootential

process and forces of evolution

Timeframe of study

Snap shot: An explanation of the current form of a behavior in terms of present-dav

(a.k.a. causation)

Causal explanations in terms of what the behavior is and how the behavior is constructed. These explanations can include physical morphology, molecular mechanisms or other underlying biological factors Aristotle: efficient cause

Adaptive Value

(a.k.a. function or survival value)

Functional explanations regarding the utility of the current form of the behavior with regard to increasing an organisms lifetime reproductive success.

Aristotle: final cause

Story:

An explanation of the current form of the behavior in terms of a sequence

Ontogeny

(a.k.a. development)

Developmental explanations for sequential changes across the lifespan of an individual. Often these explanations are concerned with the degree to which the behavior can be changed through learning.

Aristotle: material cause

(a.k.a. evolution)

Evolutionary explanations that describe the history of the behavior, such as which ancestor first possessed this trait, what was the antecedent to this behavior, and what selective pressures in the past have shaped this behavior.

Aristotle: formal cause

EFFICIENT CAUSE (AFTER D. PALMER)

Aristotle's 4 Causes

- 1) Efficient cause: "is the trigger that starts a process moving"
- 2) Material cause: "that from which,"
- 3) Final cause: the goal or the purpose (telos in Greek)
- 4) Formal cause "the essence of a thing"

WEBSTITES WITH MORE INFO IF YOU ARE CURIOUS

http://ishe.org/wp-content/uploads/2015/04/HEB_2013_28_4_3-11.pdf http://www.willamette.edu/~sbasu/poli212/AristotleonCause.htm http://www.uvm.edu/~jbailly/courses/Aristotle/notes/AristotleCausesNotes.html <u>x is what produces y</u> <u>x is what y is [made] out of.</u> <u>x is what y is for</u> <u>x is what it is to be y.</u>