

Do your data support the hypothesis if you observe $Y \& Z, T \& Y$ and U\&V cooperating?
$R_{\mathrm{yz}}=1 / 2 \wedge 2=1 / 4 ; R_{\mathrm{ty}}=1 / 2 \wedge 5+1 / 2 \wedge 5+1 / 2 \wedge 5=3 / 32 ; \mathrm{R}_{\mathrm{uv}}=1 / 2 \wedge 2+1 / 2 \wedge 2+1 / 2 \wedge 4+1 / 2 \wedge 4=5 / 8$
$R_{\text {total }}=1 / 4+3 / 32+5 / 8=31 / 32=0.97 ; R_{\text {avg }}=0.97 / 3=0.323$
Relatedness X Benefit $=$ Cost; $0.323 \times 2.82-1.18=-0.268$ so costs are greater then benefit ; no support.
Do your data support the hypothesis if you observe U\&Z, T\&Y and R\&V cooperating?
Ruz $=\left(\right.$ same as $T \& Y$) $=3 / 32 ; R_{\mathrm{ty}}=1 / 2 \wedge 5+1 / 2 \wedge 5+1 / 2 \wedge 5=3 / 32 ; R_{\mathrm{rv}}=1 / 2 \wedge 4+1 / 2 \wedge 4+1 / 2 \wedge 4=3 / 16$
$R_{\text {total }}=3 / 32+3 / 32+3 / 16=12 / 32=0.37 ; R_{\text {avg }}=0.37 / 3=0.123$
Relatedness X Benefit $=$ Cost; $0.123 \times 2.82-1.18=-0.83$ so costs are greater then benefit ; no support
Do your data support the hypothesis if you observe U\&V, T\&V, and W\&X cooperating?
$R_{\text {uv }}=1 / 2 \wedge 2+1 / 2 \wedge 2+1 / 2 \wedge 4+1 / 2 \wedge 4=5 / 8 ; R_{\text {tv }}=($ same as UV $)=5 / 8 ; R_{\text {xw }}=1 / 2 \wedge 2+1 / 2 \wedge 2=1 / 2$
$R_{\text {total }}=5 / 8+5 / 8+1 / 2=14 / 8=1.75 ; R_{\text {avg }}=0.583$
$\underline{\text { Relatedness } X \text { Benefit }=\text { Cost; } 0.583 \times 2.82-1.18=0.46 ; \text { so yes, data support kin selection hypothesis }}$
To help you, I have drawn paths connecting some of these coalitions (I did not drawthem for T\&V because it was getting very cluttered (I also realize I left of lines through C for RV and YT) but they are related in the same way that U\&V are.) You should be able to do the math to figure this out, not just guess. I will post the key later.
of course you would need a bigger dataset

