THE HISTORY OF CARTOGRAPHY

VOLUME TWO, BOOK TWO

Cartography in the
Traditional East and Southeast
Asian Societies

Edited by
J. B. HARLEY
and
DAVID WOODWARD

Associate Editor
JOSEPH E. SCHWARTZBERG
Assistant Editor
CORDELL D. K. YEE

THE UNIVERSITY OF CHICAGO PRESS • CHICAGO & LONDON
Chinese cosmographical thought of premodern times was not as concerned as its counterparts in Western civilizations with the overall shape of the world or structure of the cosmos. There is no pre-seventeenth-century Chinese equivalent of the medieval European mappae mundi or of Western representations of the earth showing its various cosmographical divisions or climatic zones. The widely held conception that China comprised "all under heaven" (tianxia), as well as the geographical isolation of Chinese civilization, may have contributed to Chinese cosmographers' lack of interest in outlining, either realistically or schematically, the form of the world as a whole. Whatever the explanation, traditional Chinese cosmographical charts generally represent structures in such microcosmic dimensions as the architectural, the urban, and the agrarian rather than depicting the shape of the earth or the system of the world. Like many Western cosmographical diagrams, however, these Chinese charts were generally based on the supposition that there exist correspondences or correlations, which may be graphically expressed, between various orders of existence or realms of the universe, such as those of heaven, earth, and humanity. But in Chinese cosmographical thought these correspondences were drawn less often between macrocosm and microcosm as among various orders of mundane reality.

In comparison with most of their counterparts in Western and Middle Eastern cosmographical traditions, Chinese cosmographical charts were also generally more subordinate to and less independent of textual descriptions. Although graphic representations of cosmographical schemata were common in China from the Song era (960–1279), those diagrams were often printed principally to illustrate or substantiate a cosmographical conception that received a more authoritative or precise formulation in an accompanying text. For Chinese scholars a picture (or graph) was not worth a thousand words, however useful it might be as a visual aid. The relationships between graph and text may well have differed in earlier periods, as the lore surrounding the composition and articulation of the canonical Yi jing (Book of Changes) implies. But so few of such diagrams have survived from the pre-Song or preprinting era in China that it is difficult to establish just what these relationships were. Hence this chapter must rely largely on verbal descriptions for its account of Chinese cosmographical thought in its formative phase in the Han era (206 B.C.–A.D. 220), though graphic reconstructions dating from the Song and later will be included where they are helpful and relevant.

A glance at these reconstructions reveals that most of them were patterned on the same model, a square divided into nine equal squares resembling the form of a simple magic square or three-by-three grid. Cosmographers in traditional China applied this plan to the conceptualization and arrangement of such diverse kinds of space as astronomical, political, agrarian, urban, and architectural. Just as Sir Thomas Browne, according to Coleridge, saw "Quincunxes [or lozenges] in Heaven above, Quincunxes in Earth below, & Quincunxes in the water beneath the Earth," so Chinese cosmographers of the Han and later eras regarded the simple nonary square as the basis of proper order in practically every realm of space. This form was at least as important and ubiquitous in premodern Chinese cosmography as the circle was in Greek, medieval European, and Islamic cosmography. One of my principal aims in this chapter is to outline the development, articulation, and later criticism of this dominant cosmographical conception, which made Chinese cosmographical thought, at least that of the high literate tradition, remarkably uniform and well integrated. In so doing, I will focus on two particularly important eras in the history of geometric and nonary cosmography in China. These include the formative phase of the Han period and the seventeenth century, which saw the criticism and decline of established cosmographical conceptions and the emergence of new ones.

I thank Nathan Sivin of the University of Pennsylvania for his valuable comments and constructive criticism on drafts of this chapter.

In composing this outline of the formation and decline of the perennial Chinese cosmography, I found it necessary to consult sources on such diverse topics as micro-cosmic architectural structures, classical city plans, and ideal agrarian orders, for Chinese cosmographical conceptions were articulated most extensively and illustrated most graphically in these areas. Little of the modern scholarship on these subjects or schemata is devoted to their cosmographical aspects, however, focusing instead on their political, economic, or ritual significance and treating them in isolation from congruent cosmographical conceptions. In short, cosmography is not a well-developed or even a very distinct field of study among Sinologists. Hence there is at this juncture little point in attempting a systematic historiographical or bibliographical overview of the secondary literature on Chinese cosmography.

FOUNDATIONS OF GEOMETRIC AND NONARY COSMOGRAPHY

Antecedents of the perennial Chinese cosmography may be traced back to high antiquity. Rectilinear forms, especially squares, figure prominently in Chinese art and artifacts from the dawn of Chinese history. Indeed, the designs on Chinese Neolithic pots dating from as early as 5000 B.C. often consist of “parallel bands or lozenges containing concentric squares, crosses, or diamonds.”

The art of the earliest Chinese civilization, the Shang, which flourished in the latter half of the second millennium B.C., is also marked by “the imposition of abstract, balanced, geometric patterns over entire surfaces.” Even Shang domiciles, palaces, temples, and tombs, according to Chang, “were invariably square or oblong, governed in orientation by the four cardinal directions and dominated in design by a persistent attempt at symmetry.”

Shang Chinese, moreover, may well have conceived of the form of the political cosmos as square, or at least have seen the Shang realm as oriented toward the four directions, with the “countries beyond the kingdom ... grouped into four directional classes.”

By the Han era, these rectilinear orientations and divisions had been developed into a systematic cosmography in which most realms of space were supposed to be ordered by forms that were not only symmetrical or rectilinear but patterned on the nonary square or three-by-three grid. How this came to be is unknown, though Cammann speculates that these forms “all seem to have been conceived in a determined effort to apply to the greater world the plan of the simple magic square of three.” In any case, the invention of this nine-square formation was customarily attributed to one of the legendary sage-kings of high antiquity, either Yu the Great or Fu Xi, who was said to have “differentiated the nine palaces,” the nonary square. But Fu Xi was believed to have first observed such a pattern on the shell of a turtle emerging from the Luo River. So even though the nine-palace formation, the graphic basis of the perennial Chinese cosmography, was credited to an ancient sage-king, its pattern was supposedly taken from the natural world. It was immanent in the structure of heaven and earth, or at least marked on the shell of a remarkable turtle.

As one of the great civilizing inventions attributed to an ancient sage, the nonary square or three-by-three grid, like other inventions such as agriculture, written language, and herbal medicine, was meant to be applied for the development and improvement of human culture and society. It was not, in other words, simply an aspect of the traditional Chinese worldview; it had policy implications and practical uses. Its judicious application in the agrarian realm, in the form of the “well-field system,” for example, was supposed to secure the livelihood of the cultivator, the revenue of the state, and the peace and prosperity of the realm as a whole. The construction

5. Schuyler Cammann, “The Magic Square of Three in Old Chinese Philosophy and Religion,” *History of Religions* 1 (summer 1961): 37–79, quotation on 44. Cammann as well as other historians traces the cosmographical applications of this magic-square form in China to a rather shadowy classical thinker, Zou Yan (305–240 B.C.), whose original works have not survived. According to the account preserved in the *Shi ji* (Records of the grand historian, completed ca. 91 B.C.) of Sima Qian, Zou Yan held that China, which itself consisted of nine regions, comprised the central eighty-first portion of the world and the central ninth of the middle continent of the world. Small encircling seas separated the nine continents from one another, and a large encircling sea marked the outer rim of the earth where it met the dome of heaven. “Mengzi Xunqing liejuan” (Collected biographies of Mencius and Xunqing), in Sima Qian, *Shi ji*, 74.1b; see *Xinjiao Shi ji sanzhu zhu* (Newly collated *Shi ji* with three principal commentators), 5 vols. (Taipei: Shijie Shuju, 1972), 4:2344. The *Shi ji* is the first in the series of twenty-five official histories, and the most celebrated Chinese historical work.

of manorial system or perhaps a formula for allocating the produce of the land between the sedentary and swidden members of a community.10

Whatever the social or economic origins of the well-field arrangement, by Han times it was conceived primarily as a mensural schema cast in the form of the three-by-three grid or nonary square.11 Indeed, so closely associated was the well-field system with this nine-palace formation that the great twelfth-century Neo-Confucian philosopher Zhu Xi (1130–1200) posited that all other applications of this grid form, such as the mingtang or "luminous hall," a sort of cosmological temple or architectural microcosm, arose from the well field.12 Needham suggests that the well-field grid may even have helped inspire the idea of a coordinate system in Chinese cartography, geometrized versions of the jiu zhou favored by cosmographers of the Han era.

11. See, for example, the commentary under the fifteenth year of Duke Xuan in Fan Ning (339–401), comp., Chunqiu Guliang zhuans (Spring and autumn annals with the Guliang commentary, fourth century), 7.8b; see the modern edition (Taipei: Xinxing Shuju, 1975), 92. The Chunqiu is one of the five Confucian classics (Wujing), and the only one supposedly composed by Confucius himself.

12. Zhu Xi in Li ji jishuo (Collected explanations of the Record of rituals), annotated Chen Hao (1261–1341), 3.35b–36a, in Sishu wuujing Song-Yuan ren zhu (Song and Yuan commentaries on the four books and five classics), 3 vols. (Beijing: Zhongguo Shudian, 1984), 2:83–84. The Li ji (Record of rituals, ca. first century B.C.), another of the five Confucian classics, is actually an anthology of prose writings of the most diverse sort and provenance, compiled by redactors of the Han era.
Irregularly shaped and spaced. The boundaries of these regions, as described in the "Yu gong" (Tribute of Yu) chapter of the canonical Shu jing (Book of documents, dating from at least the late Zhanguo period [403–221 B.C.]), are generally marked by such sinuous and meandering physical features as mountains and rivers (fig. 8.2). However, later accounts of the jiu zhou, especially those dating from the third and second centuries B.C., became progressively more schematic and even approach the geometric form of the nonary square. The descriptions of the jiu zhou in the early Han compendium the Huainanzi (Book of the] Master of Huainan, written ca. 120 B.C.) attributed to Li An, for example, locate the nine regions "simply in terms of the eight cardinal directions plus the center."14 The "Wangzi" (Royal institutions) chapter of the canonical Li ji (Record of rituals, ca. first century B.C.), which also dates from the Han era, remarks that "within the four seas, there are nine regions, each a thousand li squared."15 By conflating the nine regions with the nine domains (jiu fu), a series of concentric squares centered on the royal capital as described in another canonical text compiled in the Han era, the Zhou li (Ritual forms of Zhou), the later Han commentator Zheng Xuan (127–200) completed the geotization of the classical jiu zhou (fig. 8.3). Thus the influential Tang-era commentator Kong Yingda (574–648) wrote that the nine regions were bounded by straight lines, not by natural physical features.16

As with the grid form of the well-field arrangement, this geotized political geography was not simply an aspect of the traditional worldview or solely a matter for cosmographical speculation. Even as late as the nineteenth century, political reformers in China and Japan proposed to establish squared administrative districts as a prelude to a reign of virtue, or at least the improvement of government.17 These later reformers, however, were not so much attempting to reimpose a particular cartographic plan, that of the nine regions, as proceeding on the assumption that the geotization of political districts was an important aspect of serious political reform.

15. See Li ji jishuo, 3.3b, in Shu ming, 2:67 (note 12).
16. Part 2 of Kong Yingda, "Yu gong wu fu tu shuo" (Explanation of the diagrams of the five domains of the Tribute of Yu) in Zhang Huang, comp., Tushu bian (Compilation of illustrations and writings, compiled 1562–77), 86.2b, in Gujin tushu jicheng, 7:1091 (note 6).
17. See, for example, Hall, Japan, 276 (note 9); and William Theodore de Bary, Wing-tsit Chan, and Burton Watson, comps., Sources of Chinese Tradition (New York: Columbia University Press, 1960), 728.
The nine-region schema provided a basis for a third cosmographical conception, the fenye or “field-allocation” system, which correlated sectors of the heavens with territories of the earth. To each of the nine geographical regions of China there was “allocated” a corresponding celestial “field.” This fenye arrangement is a good example of a correlative system, based on the idea that correspondences may be drawn between separate orders of existence or realms of the cosmos.

The origins of the fenye system, like those of the wellfield arrangement, are obscure. It may well have originated as a cartographic device for tracing the annual progress of the sun, moon, and planets through the heavens. Marking off the band of the ecliptic into a number of sectors would have enabled terrestrial observers to track the movements of these celestial lights in a rough way. If such was indeed the earliest form of the fenye, then it would initially have had little to do with nonary cosmography. On the other hand, Wang Yong, a modern historian of Chinese geography, speculates that the fenye first arose from the jiuzhou or nine-region conception.

Whatever its origins, by Han times the fenye had developed into an astrological system pairing earthly regions or states with corresponding heavenly fields or asterisms. The late-classical compendium the Lushi Chunqiu (Master Lu’s Spring and autumn [annals]), associated the nine

FIG. 8.5. A FENYE-INFLUENCED DIAGRAM OF THE "ROUNDED HEAVENS" CIRCUMSCRIBING THE "SQUARED EARTH." This map shows the more modern provinces of China with surrounding tributaries and barbarian regions within the central square, and the twenty-eight lunar lodges, divided into four groupings of seven each, on the peripheral circle. This chart, however, does not specify which lunar lodges correspond to which terrestrial regions. But it does illustrate another important Chinese cosmographical idea, that "the earth is inclined toward the northwest." Thus "the Southeast is mostly watery and the Northwest mostly mountainous."

Size of the original: ca. 15.5 cm. From Xinzheng xiangji beiyao tongshu (Newly amplified almanac of auspicious images, 1721), 1.4b-5a. By permission of the Oriental and India Office Collections, British Library, London (15237 a 24).

classical regions with nine celestial fields. Later Han texts like the Huainanzi correlated earthly territories with other astronomical schemata such as the twenty-eight lunar lodges, the twelve stations of the Jupiter cycle, and the nine paths of the moon (figs. 8.4 and 8.5). An untoward event in any one of these celestial sectors boded ill for the political authorities in the corresponding terrestrial region. A simple example of a fenye prognostication or verification, drawn from the "Wuxing zhi"

(Treatise on the five phases) of the official Han history *Han shu*, is as follows:

In the seventh month of the third year of the reign of Gaodi [204 B.C.], there was a comet in the *Da jiao* [Great Horn] asterism that disappeared after a little more than ten days. Liu Xiang [77–6 B.C.] suggests that at that time Xiang Yu was the king of Chu and the hegemon of the feudal lords, but that [his rival] the Han had already pacified the three Qin [states] and was separated from Xiang Yu only by the district of Yingyang. Thus the hearts of all in the realm were shifting to the Han, and Chu was about to disintegrate. So the comet purged the royal throne [in the heavens].

The political application of the *fenye* astrological schema required that the boundaries of the corresponding celestial and terrestrial fields be measured with precision. Thus, Chen Zhuo in the third century listed the dimensions of such fields by number of degrees.

Like the well-field and nine-region schemata, the field-allocation system was not confined to the ethereal realms of cosmological speculation. It had practical political uses as well. In fact, most imperial Chinese dynasties from Han times employed official astrologers charged with making political prognostications based on their observations of celestial abnormalities. When such prognostications were taken seriously by those in positions of authority, changes in the boundaries of corresponding celestial and terrestrial sectors could influence the conduct of government. Thus it is not surprising that leading cosmographers, astronomers, and even historians of the Tang (618–907) and Song eras, particularly Li Chunfeng (602–70), Yixing (682–727), and Ouyang Xiu (1007–70), were seriously concerned with proposals to reform the boundaries of the terrestrial divisions in the *fenye* system, as well as to adjust the celestial divisions to new astronomical measurements. Such proposals are not known to have resulted in new land surveys and maps, however. Their purpose was, after all, to bring the ancient *fenye* conceptions into accord with existing terrestrial boundaries.

Classical Chinese cosmographical conceptions left a more permanent, palpable mark on urban configurations—the shape of Chinese cities—than on any other arrangement of space. Some of the great capital cities of imperial China, including Beijing, were built or reformed to accord with cosmographical strictures, particularly orientation of the city walls and gates to the four points of the compass and construction on a rectilinear plan very nearly resembling a square. Whereas cosmographers in several other Eurasian civilizations generally only speculated on the form of the ideal city, some of their Chinese counterparts actually saw reasonable facsimiles of their ideal urban designs constructed. Chinese cosmographical models also influenced urban planning in other East Asian countries, especially Korea and Japan. The two imperial capitals of premodern Japan, Nara and Kyōto, were modeled on the rectilinear grid form of the great capital of Tang-era China, Chang'an.

However, cosmographical conceptions apparently had little influence on the general shape of Chinese cities until at least the end of the Han era. According to Wright, early Chinese cities seem to have been irregular and asymmetrical in form. This was true even of the first great imperial capital in Chinese history, Chang'an in the Former Han era (206 B.C.–A.D. 8).

A canonical text that probably dates from this era, the "*Kaogong ji*" (Artificers' record) chapter of the *Zhou li*, however, established the basic urban plan that greatly influenced the design of later imperial capitals. In addition to prescribing cardinal axiality and orientation, this text explains that "the builders should build the capital city as a square of nine square li. On each side of the city walls there are three gates. Within the city there are nine meridional and nine latitudinal streets, each of the former being as wide as nine chariot-tracks." This classical plan of the ideal city thus incorporates nonary numerology, as well as a squared perimeter, into its design, though it does not prescribe that the city be patterned after the three-by-three grid. Wheatley, however, has suggested that the nine streets in this text originally designated nine

21. "Wuxing zhi" in Ban Gu, *Han shu* (History of the Former Han, compiled first century A.D.), 27C.26b–27a, in Xinxiao Han shu jizhu (Newly collated *Han shu* with collected commentaries), 5 vols. (Taipei: Shijie Shuju, 1973), 2:1516. The *Han shu* is the second in the series of twenty-five official histories, all but the first covering one particular dynasty, which in the case of the *Han shu* is the Former Han era (206 B.C.–A.D. 8).

squares. In that case, he speculates, "the ideal-type city should have originally comprised a regular nonary layout of eight sectors, pivoted about a central unit consisting of one-ninth of the total area."\footnote{27 Paul Wheatley, *The Pivot of the Four Quarters: A Preliminary Enquiry into the Origins and Character of the Ancient Chinese City* (Chicago: Aldine, 1971), 414.} In other words, the nine-palace formation may at one time have been applied to the plan of the ideal city as well as to the well-field and nine-region configurations (fig. 8.6).

The classical city plan was, however, actually realized in the designs of some of the great imperial capitals of Chinese history, such as Chang'an in Tang times and Beijing in the Ming (1368–1644) and Qing (1644–1911) eras, though such obstacles as existing settlements, topographical irregularities, and geomantic requirements did necessitate some adjustments. This plan, like its counterparts in several other Eurasian civilizations, was designed to illustrate and establish the centrality of the ruler, the Son of Heaven who sat at the "pivot of the four quarters" and mediated between heaven and earth. Hence emperors throughout Chinese history often concerned themselves with the geometric layout and numerological symbolism of the capital and its cultic sites and structures, just as...
this institution in earlier classical sources, such as the Mengzi and the Zuozhuan (Zuo's tradition [of interpreting the Chunqiu], ca. 300 B.C.), are both brief and cryptic, giving no account of its form and little even of its functions. These early sources do not associate the mingtang with nonary cosmography, or indeed with cosmography of any sort.

The dearth of detailed descriptions of the mingtang in earlier classical texts left a clear field for Han-era scholars to recreate the structure along the lines of their own cosmographical conceptions. There was little to limit the free play of Han cosmographical fancies regarding the mingtang, as there was with the nine-region conception, for which an inconveniently detailed classical description existed. Hence, postclassical students of the mingtang devised more than twenty different versions of this architectural microcosm. However, the most popular postclassical reconstructions of the mingtang were those based on quinary and nonary cosmography and numerology, particularly the latter (fig. 8.8).

Inasmuch as architectural structures are generally more amenable to the expression and elaboration of cosmographical ideas than are agricultural fields, political divisions, and even city plans, these reconstructed mingtang extend such conceptions to a greater length than any of the nonary schemata discussed thus far. Cai Yong (133–92), a later Han expositor of the nonary interpretation of the mingtang, described the structure as a complete architectural microcosm. Its nine rooms, for example, represented the nine regions, its twelve palaces resonated with the twelve hours of the day, its twenty-eight pillars symbolized the twenty-eight lunar lodges, and its eight inner passages were paired with the eight trigrams of the Yi jing. Its base was square, the shape of the earth, its round roof resembled the heavens, and the whole structure was surrounded by water that represented the four seas.

The complex form of the mingtang is not architecturally feasible, as Maspero has pointed out. Yet impe-

FIG. 8.8. DIAGRAM OF THE NINE CHAMBERS OF THE LUMINOUS HALL. This diagram outlines the standard plan of the mingtang, correlating the chambers with magic-square numbers and the eight trigrams associated with the Yi jing (Book of changes). Only the central chamber, the “Grand Temple” or “Grand Chamber,” lacks a corresponding trigram. This seventeenth-century reconstruction by a famous classical scholar is based on his study of Han cosmographical texts, since no diagrams of the plan of the mingtang survived from this earlier period.

Size of the original: 20 × 13.5 cm. From Hu Wei, Yi tu mingbian (A clarifying critique of the diagrams [associated with the Book of changes], 1706), from an edition of 1843, 2.11b. Reproduced courtesy of the Harvard-Yenching Library, Harvard University, Cambridge.

they did with agrarian reform along the lines of the well-field schema. Perhaps the most important and famous cultic site or structure was the mingtang or “luminous hall,” a sort of cosmological temple designed for the performance of imperial rites, as well as “an architectural symbol of virtuous government” (fig. 8.7). Unlike the other cosmo-

28. For an example of such imperial concern, see Jeffrey F. Meyer, Peking as a Sacred City (Taipei: Chinese Association for Folklore, 1976), 109.
rival sovereigns throughout Chinese history, beginning with the emperor Wu (r. 140–87 B.C.) of the Former Han era, commissioned the construction of mingtang. Some of these, such as that built by the usurper Wang Mang (45 B.C.-A.D. 23) in A.D. 4 and that reconstructed by the Later Han emperor Guangwu (r. 25–57), were apparently modeled as closely as possible on the nonay plan outlined in the Han compendium the Da Dai Li ji (The Elder Dai's record of rites). There is archaeological as well as literary evidence that such architectural microcosms were constructed as early as Han times, for an elaborate building, said to be the ruins of Wang Mang's mingtang, recently excavated just south of the Han-era capital of Chang'an, was divided into nine rooms situated on a square base and surrounded by a circular water-course.33

Why did some of the most renowned, energetic, and practical imperial sovereigns in Chinese history concern themselves with the construction of a cosmographically and numerologically proportioned architectural microcosm? One of the main reasons was that it provided the appropriate setting for the Son of Heaven's ritual ordering of space and time, especially of the seasons of the year. By moving through the mingtang at the appropriate pace, the ruler helped to ensure that the seasons would follow their proper order.

But for this ritual tour of the mingtang to be efficacious, the dimensions and parts of this architectural microcosm had to correspond with the larger patterns and rhythms of the cosmos. These included such basic markers and divisions of space and time as the nine regions of the realm, the twelve months of the year, the twenty-four solar periods, and the twenty-eight lunar lodges, and such configurations as the square base (corresponding to earth) and the round roof (corresponding to heaven). Hence debates over the proper form and dimensions of the mingtang, which often arose at court in response to an imperial commission to construct such a structure, were not merely antiquarian exercises.34 For inasmuch as the mingtang was supposed to be constructed as an architectural microcosm, the subject of dispute was ultimately the shape and proportions of the cosmos in general, not simply the optimum measurements of a building. Hence it is not surprising that some of the most important figures in Chinese intellectual history, such as Dong Zhongshu (ca. 179–ca. 104 B.C.), Zhu Xi (1130–1200), Wang Fuzhi (1619–92), and Kang Youwei (1858–1927), wrote on the subject of the mingtang, though they did not include in their extant works charts or graphs of its proper plan.

The cosmographical pattern or model that inspired the most extensive debate and speculation in traditional China was not, however, the mingtang, but the Luo shu (Luo River writing) and its companion, the Hetu (Yellow River chart). The importance of these schemata in Chinese thought of premodern times is illustrated by the large section devoted to them in the great Chinese encyclopedia the Gujin tushu jicheng (Complete collection of books and illustrations, past and present, 1726), in which materials on the Hetu and Luo shu occupy more space than that given to some of the individual Confucian classics. Indeed, these figures were the pivots of cosmological discourse in the Neo-Confucianism of the Song era, the most influential intellectual movement in the past thousand years of Chinese history. Moreover, later scholars' exposé of the heterodox origins of commonly accepted versions of the Hetu and Luo shu was one of the most important episodes in the intellectual history of the Qing period.

Unlike the cosmographical conceptions discussed above, neither the Luo shu nor its complement, the Hetu, was used directly as a model for ordering any type of physical space—astronomical, geographical, agrarian, urban, or architectural. But the Luo shu in particular was widely regarded as the original source of nonary cosmography and even of the nine-palace formation. Later commentators on the Hetu and Luo shu, moreover, interpreted these figures as the paradigms not just of nonary cosmograms, but of all tu, a Chinese character that might designate almost any form of graphic representation including charts, diagrams, maps, and illustrations in general. These tu, supposedly devised or revealed by the sages of high antiquity, were among the primary sources of order in the world, as important in this regard as the books of the Confucian canon.

As with the mingtang, there are no clear or detailed descriptions of either the Hetu or Luo shu in classical Chinese literature of the pre-Han era, a situation that promoted their cosmological metamorphosis. Lacking precise classical accounts, Han cosmologists could give free rein to their imaginations in reconstituting and reinterpreting these figures. On the other hand, they could not find much support for their speculative reconstructions in classical literature. Of all the extant texts that may be reasonably dated from the pre-Han era, none associates the Hetu or Luo shu with any particular geometric configuration or numeralogical system. These early references generally limit themselves to relating that these figures emerged from sacred rivers and that they were good auspices.35

Postclassical interpretations of these references, especially those devised in the Han era, often identified the

34. For a brief account of one such debate, which arose in the seventh century, see Wechsler, Offerings, 207 (note 29).
Later commentators went on to identify the Hetu with roundness and the order of the heavens and the Luo shu with squareness and the mensuration of the earth. 38 The association of the Luo shu with the nine-palace formation as well as with nonary numerology and geographical order may also have arisen as early as the Han era. 39 Postclassical commentators on the Luo shu even identified this figure with the simple magic square of three. On the other hand, the standard diagram of the Luo shu, that favored particularly by the Neo-Confucian cosmologists of the Song era, both dispenses with the squared outline and represents each of the magic-square numbers by figures that resemble knotted cords rather than by numerals (fig. 8.10). Since no graphic representation of the Luo shu survives from earlier than the Song, it is difficult to assess the relative antiquity and authority of these different forms of the Luo shu. Nor is it easy to reconstruct any genealogy of charts typed as “Luo shu,” though different versions did exist.

In sum, few of the cosmographical conceptions outlined above—the well-field, field-allocation, classical city plan, mingtang, and Luo shu schemata—could be fit so clearly and perfectly into the nine-palace template as to inspire universal approbation. Indeed, debates on the correct form of some of these cosmograms frequently arose in the postclassical era of Chinese history. Nevertheless, the pervasive influence of this nonary grid form on the cosmographical theory and practice of Chinese civilization is remarkable. Nor was this influence confined to the schemata just named. It may be traced in such cosmographical artifacts as the bronze “TLV” mirrors dating from the Han era, which depict a

36. “Wuxing zhi” in Xinjiao Han shu jizhu, 27A.1a–b (2:1315) (note 21); Kong Anguo (f. ca. 100 B.C.), Shang shu Kongzhuang (Documents of antiquity [Book of documents] with Kong’s commentary), Sibuxi beiyao edition, 7.1b; Li Daoping, ed., Zhou yi ji jie zi zuanshu (Collected commentaries and annotations on the Zhou change [Book of changes]) (Taipei, 1967), 8.793. The Yi jing, probably the most complex and controversial of the five Confucian classics, was originally a manual for divination and a collection of omens and anecdotes to which were later appended philosophical and cosmological commentaries ascribed to Confucius.

38. Zhu Xi, Yixue qimeng (Primer on the study of the [Book of] changes, 1186), 1.3a–b; see the modern edition (Taipei: Guanshu Shi Yinshuguan, 1975), 1.5–6.

rounded heaven encompassing a squared earth. According to Cammann, even nine divisions, representing the nine ancient regions of China, can be projected on the face of some of these cosmic mirrors. Similar patterns appear in the checkered formation of the Han diviner's board as well as the gaming boards used for various types of "chess."

Ninary cosmography in premodern China was not, moreover, the exclusive preserve of orthodox thinkers associated with the Confucian or classical traditions. The nine bureaus of the Daoist hell were sometimes represented in the form of a nonary square, as were some Buddhist mandalas. The Daoist altar used in rites of cosmic recreation also incorporated the nine-palace arrangement along with other cosmological proportions and symbols.

At a more popular level, the influence of the schematic cosmography sketched above may be traced even in Chinese domestic architecture. As Wang remarks, "The typical home in rural Taiwan is . . . constructed, as nearly as possible, to conform to an ideal of perfect symmetry." The second-floor plans of many typical Chinese houses, moreover, approximate the form of the nine-palace model.

Although literary evidence concerning popular cosmographical thought in China is sparse, there is thus some reason to suspect that common people in late traditional China were more concerned and familiar with the cosmographical conceptions articulated by the cultured elite than were their counterparts in medieval Western and Middle Eastern civilizations. Such conceptions were widely circulated through the ubiquitous Chinese almanac (lishu), probably the most popular book in late traditional China. They might also have been purveyed through the medium of diviners, many of whom used variations and applications of the nine-palace formation,

particularly the *Luo shu*, in practicing their art (see, for example, fig. 8.16 below).

Geomancy and its Relation to Cosmography

There did exist countervailing cultural traditions in premodern China that opposed some of the basic principles of geometric cosmography. The most prominent of these was geomancy, or *feng shui* (literally, wind and water), an art concerned primarily with siting of such structures as buildings and graves in auspicious locations so as to benefit the living and pacify the dead. This was accomplished by locating these structures in places where they would harmonize with and draw upon the flow of the energetic pneuma (*qi*) that circulated through such features of the terrain as mountains and streams. Hence the art of *feng shui* is perhaps better characterized by the English term “siting” than by the word “geomancy,” though the latter term has become so well established as to make abandoning it rather difficult.46

The most widely known and practiced application of geomancy is the identification of proper burial sites for deceased parents and other ancestors.47 Geomantic prescriptions for the location of graves are, moreover, more specific and theoretical than for other types of sites. But the Chinese art of siting has been applied in a very wide range of spatial dimensions, “from the smallest of spaces—say, a bedroom or even the location of a chair—to the largest, cosmic dimension.”48 In late imperial China, geomancers were frequently called upon to site and orient residences, villages, and even capital cities.49 They also advised the government on such enterprises as the construction of public buildings, the conduct of military operations, and the management of public works.50 Even the boundaries of Chinese administrative districts, ranging from villages and townships to whole provinces, frequently follow the irregular and meandering lines prescribed by *feng shui*.51 Among the numerous contemporary examples of the public use of geomancy is that by the famous architect I. M. Pei in his design for the Fragrant Hill Hotel near Beijing.52

Although geomancy in its higher reaches was a rather complex art practiced by skilled specialists, the knowledge of general geomantic rules of thumb was surprisingly widespread in late traditional Chinese society. As Smith remarks, “Virtually everyone in China recognized its basic symbolic repertoire and knew intuitively a good geomantic location on first glance.”53 Even the least educated Chinese, according to the nineteenth-century observer J. J. M. de Groot, “show an astounding amount of knowledge of Fung-shui.”54 Indeed, this art provided some of the basic categories and concepts through which the Chinese man in the rice paddy comprehended the physical environment. It helped bring the cosmology of the high culture down to earth.

As with several of the Chinese arts and sciences, the origins of geomancy have been traced by its practitioners to hoary antiquity, to the same legendary sage-kings who are credited with the delineation of the *Hetu* and *Luo shu* and the demarcation of the nine regions (*jiu zhou*). More historically, there is some archaeological and literary evidence that the establishment of settlements as early as the Shang dynasty of the second millennium B.C. was preceded by careful examination of local topographical conditions, perhaps auguring the existence of a protogeomantic art in that remote era.55 The cosmographical foundations of siting were established in texts of the classical era, especially the *Yi jing* and the *Guanzi* (Book of Master Guan). During the early Han period, *feng shui* apparently was recognized and practiced as an independent art. A Han-era bibliography contains notices of treatises that seem to have been concerned with geomancy, though none of these are now extant.56 The post-Han migrations of Chinese to the south, with its variegated natural landscapes and exotic aboriginal cultures, evidently stimulated the development of this art, which was codified in the *Zang shu* (Burial book) ascribed to Guo Pu (276–324) and the *Huangdi zhai jing* (The Yellow Emperor’s site classic) credited to Wang Wei (415–43).57

47. Smith, *Fortune-Tellers and Philosophers*, 151 (note 46).

57. Steven Bennett questions the attribution of the *Huangdi zhai jing* to Wang Wei; see Bennett, "Patterns," 5 (note 46).
In the Song era, two major schools of geomancy crystallized, one concentrating on cosmology and the other on the forms of the landscape. The first of these, the "Compass" or "Directions and Positions" school, was supposedly developed by Wang Ji (fl. 1030–50) and was especially popular in the southern coastal province of Fujian. Hence it is also sometimes referred to as the Fujian school. This school drew on the metaphysical speculations of the Song Neo-Confucian philosophers and used such cosmological ideas as yin-yang and the five phases (wuxing) to analyze sites. In determining the spatial and temporal dimensions of a site, adepts of this Directions and Positions school relied heavily on the geomantic compass (luopan or luojing), a complicated instrument whose dial might have as many as thirty-eight concentric rings centered on a "celestial pool" that housed a magnetic needle (fig. 8.11). Inasmuch as these rings incorporate "nearly all the Chinese symbols which are used in dealing with time and space," ranging from the eight trigrams to the twenty-eight lunar lodges, it amounted to "an outline of the universe according to traditional Chinese natural philosophy." Like the structures inspired by the classical nonary square, such as the classical city plan and the mingtang, it was a concrete model of the cosmos. The compass was applied to the art of siting by aligning the disk with the magnetic needle and then determining the coordinates of the site in question by all the relevant measures of space, time, and cosmic change indicated on the compass dial. Siting by this method left wide latitude for creative interpretation by professional practitioners of the art.

The other major geomantic school, the "Form" or "Forms and Configurations" school, associated with the southern inland province of Jiangxi, supposedly developed from the teachings of Yang Yunsong (fl. 874–88). In contrast with the rather analytical Compass school, with its "abstruse cosmology and elaborate calculations," the Form school was much more popular and down to earth, "by virtue of its emphasis on physical forms and configurations." Its practitioners relied less on the cosmological schemata encompassed by the geomantic compass and more on on-site inspection of the landforms around proposed sites for buildings and tombs, particularly the shapes of mountains and the directions of watercourses, in order to determine the patterns of cosmic energy flow. The approach of this school has been characterized as more "intuitive" and "mystical" than that of the "analytical" Compass school. Indeed, some authorities of this school "describe the experience of finding the right location in terms reminiscent of Chan-Buddhist enlightenment." Nevertheless, the adherents of the Form school did not rely on intuitive insight or visual scanning alone, but made use of schematic topographical maps that showed how the currents and con-

FIG. 8.11. ILLUSTRATION OF A GEOMANTIC COMPASS.

This diagram depicts a nineteenth-century geomancer's compass. The innermost circle is called the "celestial pool" and is divided in half by the magnetic needle, betokening the division of the Supreme Ultimate into yin and yang. The first ring contains the eight trigrams of the Yi jing, the second has characters representing the twenty-four directions, and so on to the outermost ring, which designates the twenty-eight lunar lodges. The compass included practically all of the systems and series the Chinese used to measure or represent elements of space, time, and cosmic change.

60. Lee, "Feng-Shui," 158–59 (note 49), and Bennett, "Patterns," 3 (note 46).
FIG. 8.12. ILLUSTRATIONS OF THE TOPOGRAPHICAL FORMS CORRESPONDING TO THE FIVE PLANETS AND FIVE PHASES. The upper illustrations in this diagram depict side views and the lower illustrations top views of mountain forms. The captions say that the form corresponding to the metal star (Venus) is round, to the wood star (Jupiter) is straight, to the water star (Mercury) is curvy, to the fire star (Mars) is pointed, and to the Earth star (Saturn) is square. Size of each page: 21 x 14 cm. From Xu Shanjie and Xu Shanshu.

centrations of the energetic qi or pneuma that pulsed through the ridges and watercourses of the earth could be traced in order to identify auspicious locations. They also cataloged various landforms by a rich metaphorical vocabulary that likened the physical features and relationships of the landscapes to animals (especially the mythical dragon), parts of the human body, celestial bodies, manufactured objects, and even the characters of the Chinese written language. For example, geomancers correlated each of the five planets (and correlatively the five phases of cosmic change) with particular landforms, specifically the shapes of mountains, on the theory that celestial bodies must have their terrestrial counterparts. They correlated gently rounded forms with metal and the planet Venus, elongated trunklike forms with wood and the planet Jupiter, softly undulating forms with water and the planet Mercury, sharply pointed forms with fire and the planet Mars, and squared forms with Earth and the planet Saturn (fig. 8.12).

Although theoretically distinguished from one another, the Compass and Form schools were often combined in practice, in their literature, and even in their cosmographical orientations. Geomancers of all persuasions, for example, were generally in accord regarding the characteristics of the ideal feng shui spot, sometimes called the “dragon’s lair.” Such a location has been characterized by Freedman as “one which nestles in the embrace of hills standing to its rear and on its flanks; it is then like an armchair, comfortable and protecting” (figs. 8.13 and 8.14). In the front of the ideal site should run a watercourse, which must flow neither too swiftly, lest the

67. Smith, Fortune-Tellers and Philosophers, 139 (note 46).
good influences be dispersed, nor too sluggishly, lest the flow of cosmic energy stagnate. The wind stirring around the site must be correspondingly moderate. Cosmologically, the feng shui spot is the meeting place of the heavenly qi and the earthly qi, where the yang and yin, or male and female influences, are most closely intertwined and most intensely concentrated. The configuration of this ideal site has been compared to a womb, both “the place of fertility” and “the place all creatures return to at last.” From such a place, the spirits of the ancestors were well situated to favorably influence the fortunes of their living descendants.

Whatever one might think of the efficacy of this form of applied cosmography, the aesthetic and hygienic attractions of the feng shui spot, situated on a south-facing slope receiving the sun and with an unrestricted view that takes in a gently flowing stream, may be appreciated by all. As Feuchtwang puts it, “Everyone takes unsymbolic pleasure in sunlight, airiness and a good view.” Thus it is not surprising that the concept and configuration of the ideal feng shui spot were extended to cover dwellings of the living as well as of the dead. This principle is illustrated even in the architecture of rural Taiwanese houses, which “are often shaped like a lair, with two projecting wings.”

Although feng shui was practiced and appreciated throughout China by the late imperial period, it was “most pervasive and deeply entrenched” in the area of

70. Lee, “Feng-Shui,” 189 (note 49); Smith, Fortune-Tellers and Philosophers, 143 (note 46).
72. Feuchtwang, Anthropological Analysis, 117 (note 56).
73. Bennett, “Patterns,” 13 (note 46).
On the other hand, flat landscapes and relatively straight watercourses, such as those of the North China Plain, were both uninviting and unpromising to feng shui practitioners. In fact straight lines, one of the chief building blocks of classical geometric cosmography (which was based in the northern China homeland of Chinese civilization), were “anathema” in feng shui. Geomancers looked askance at such lines, which might be straight ridges, watercourses, thoroughfares, housetops, or even telegraph wires, because they easily conducted a sort of evil miasma or noxious qi that encouraged the movement of demons. Straight watercourses, moreover, were often suspected of too quickly draining off benign influences from the site in question. Hence geomancers much preferred that meandering, undulating, and even tortuous lines inform the areas around the structures for which they were employed to find the most auspicious locations. They regarded flat landscapes, the kind that were ideal for the situation of the well-field schema and the classical city plan, as “old, tired, [and] worn-down.”

Although Confucian scholars in the late imperial period frequently criticized feng shui on both ethical and cosmological grounds, the art did influence and interact with aspects of the high intellectual and cultural tradition in premoldern East Asia. Geomancers’ preference for sinuous ridges and undulating watercourses may well have affected the shapes of such features in Chinese landscape paintings, one of the noblest arts of China. Both geomancers and landscape painters, moreover, conceived of the landscape as the body of the dragon through whose veins, mountain ridges and watercourses, pulsed the vital qi. Even the feng shui spot, the dragon’s lair, frequently appears in landscape paintings, where “dwellings and temples are often ensconced in three-sided enclosures of earth, rock or foliage.”

the country south of the Yangtze, with its sinuous mountains and undulating watercourses. Mountains are of particular importance in geomancy and, indeed, “receive more attention in feng-shui manuals than any other natural phenomena.” Such manuals also give considerable attention to the bends, confluences, and branches of watercourses. To the geomancer, both mountains and rivers literally animated the landscape. They constituted the dragon’s veins, through which pulses qi, the energetic pneumonia that was also conceived as the blood of the dragon whose winding form and features could be seen in all interesting topographical formations. In fact, the whole of China has been depicted cartographically as “a tripartite dragon system with subsidiary trunks and branches” (fig. 8.15).

74. Smith, Fortune-Tellers and Philosophers, 149 (note 46).
75. Feuchtwang, Anthropological Analysis, 121 and 129 (note 56).
76. Feuchtwang, Anthropological Analysis, 141 (note 56).
77. Bennett, “Patterns,” 13 (note 46).
78. Skinner, Living Earth Manual, 25 (note 44). Joseph Needham remarks that in feng shui “there was in general a strong preference for tortuous and winding roads, walls and structures, . . . and a strong objection to straight lines and geometrical layouts.” See Needham, Science and Civilisation, 2:361 (note 56).
81. Bennett, “Patterns,” 13 (note 46).
In China, cosmography was practiced in an attempt to understand the long-distance flow of the rivers, to emphasize the long-distance flow of the rivers, and to identify the long-distance flow of the rivers. This was done in conjunction with the cultivation of land and the development of irrigation systems. The Chinese concept of cosmography was also related to the development of astrology and the understanding of the relationship between the sky and the land.

In China, cosmography was also used to understand the relationship between the land and the sky. This was done in conjunction with the development of astrology and the understanding of the relationship between the sky and the land. The Chinese concept of cosmography was also related to the development of astrology and the understanding of the relationship between the sky and the land.
Finally, geomantic orientations may have influenced the criticisms that Confucian scholars in the late traditional era directed against the established geometric and nonary interpretations of the classical cosmograms outlined above. At least there was some congruence between the preferences of geomancers and of these later critics for naturally irregular lines and boundaries (fig. 8.16).

Later Modifications and Criticisms of Traditional Cosmographical Schemata

Debates and disagreements regarding the configurations and practicalities of some of the cosmographical schemata sketched above ranged throughout premodern Chinese history. For example, agrarian reformers who proposed to implement the well-field system frequently encountered spirited opposition from opponents who argued that the plan was unworkable. As early as Song times, such famous scholars as Zheng Qiao (1108–66) and Zhu Xi noted the disjunctions between the irregular boundaries of the classical nine regions outlined in the "Yu gong" chapter of the Shu jing and the geometricized reconstitution of these regions formulated by Han commentators. As I noted above, several famous writers of Tang and Song times proposed redesigning the terrestrial components of the field-allocation (fenye) system that were out of accord with contemporary political boundaries. Debates over the proper plan and proportions of the mingtang were major episodes in the court politics of Han and Tang times, though the participants in these debates are not known to have used charts to support their arguments. And the question of the form and significance of the enigmatic Hetu and Luo shu was a chief point of cosmological controversy from Han times to the beginning of the modern era. Thus the particular geometric and nonary conceptions and patterns sketched above by no means monopolized the field of cosmographical thought in traditional China. There is no question here of a uniform, monolithic worldview from which departure was inconceivable or dissent unthinkable.

Nevertheless, few major writers before the seventeenth century challenged the basic principles and fundamental

85. Smith, Fortune-Tellers and Philosophers, 131 (note 46). Smith adds that geomancers "often employed medical metaphors to explain their ideas, and in fact, a great many specialized in traditional Chinese medicine."

86. See, for example, the introduction to the survey on the land tax in Ma Duanlin (fl. 1273), Wenzhuan tongkao (General study of literary remains), completed ca. 1280 (Taipei: Xinxing Shuju, 1962), 1.2a–4a; English translation in Sources of Chinese Tradition, 501–3 (note 17).

87. "Dili lüe" (Monograph on geography) in Zheng Qiao, Tongchi (Comprehensive treatises, ca. 1150), 40.86b; see the modern edition (Taipei: Shijie Shuju, 1970), A.218, 224; Zhu in Li ji jishu, 3.4a, in Sishu wujing, 2:67 (note 12).
presuppositions of geometric or nonary cosmography. In some cases, such as with the debates over the proper plan and proportions of the mingtang, the opponents of the nine-palace pattern supported models that were just as much in accord with geometric cosmography as was the nonary form. There was little to choose between the nonary and quinary models on this point. Further, the objections that were raised to the implementation of such plans as the well-field system focused more on the social and economic dislocations that applying them might cause than on their lack of accord with the physiography of the land. In sum, even critics of the cosmographical schemata outlined above generally operated in the same mental universe as the Han cosmographers who devised most of these models.

From this perspective, the seventeenth century marks an epoch in the history of Chinese cosmographical concepts, at least on the level of high intellectual history. For Chinese savants in this era, like their contemporaries in Europe, challenged the cosmological geometry associated with the dominant intellectual traditions of their respective cultures. Bacon condemned the medieval Scholastics for having promoted "the fiction that all celestial bodies move in perfect circles".88 and Galileo observed "that the surface of the moon is not smooth, uniform, and precisely spherical as a great number of philosophers believe it (and the other heavenly bodies) to be."89 So Chinese cosmographical critics of the same era blurred the edges of the three-by-three grid form, the nonary square, arguing that this plan did not fit physiological contours, political or ritual requirements, or classical descriptions.

Seventeenth-century criticisms of the well-field system, for example, focused on the disjunctions between the ideal geometry of this plan and the physiological irregularities of the surface of the earth. Thus Lu Longqi (1630–93) argued that this model could be applied only in those limited areas where the topography was suitable.90 And Lu Shiyi (1611–72), though advocating an eventual restoration of the well-field arrangement, practically despaired that the manifold irregularities of either the natural or the artificial aspect of the landscape could ever be made to conform to this geometric template.91 In sum, just as the circle, according to Bacon and Galileo, did not fit the order of the heavens, so the nonary square, according to Lu Longqi and Lu Shiyi, did not match the contours of the earth.

Seventeenth-century Chinese commentators also noted disjunctions between geometric versions of the nine regions and the natural boundaries of China’s ancient provinces as described in the canonical account of these areas contained in the Shu jing. Yan Ruoji (1636–1704), the most renowned early Qing authority on this classic, maintained that the legendary sage-king Yu the Great “fixed the frontiers of the nine regions by mountains and rivers.”92 Yan and his contemporaries, especially Hu Wei (1633–1714), apparently reached this conclusion through a close study of the “Yu gong” chapter of the Shu jing. Their geographical interests and conceptions, in other words, were generally focused on classical texts. But it is also possible that an acquaintance with the more realistic terrestrial maps of their day led them to doubt the geographical value of schematic cosmography.

Some seventeenth-century criticisms of the astrological fenye or field-allocation system developed a line of argument broached by scholars as early as the Tang era, that the boundaries of the terrestrial regions in the schema should be reformed to bring them into accord with natural physiographical divisions.93 Other commentators emphasized the disjunctions and incommensurability between these regions and the celestial “fields” to which they supposedly corresponded. Fang Yizhi (1611–71), for example, remarked that though the southerly Yangzhou region comprised about half of China’s land area, its heavenly “field” included only three of the twenty-eight lunar lodges.94 Finally, several early and mid-Qing critics of the fenye system objected particularly to the precision with which its expositors had attempted to calculate the bounds of the corresponding celestial and terrestrial fields in the schema. Thus Huang Zongxi (1610–95) argued that the fenye was originally intended only as a rough outline and was not geared to meet the exacting demands of astrological prediction.95 Lu Longqi contended that the fenye should not be regarded as a system at all, that it had little basis apart from a rather incomplete and haphazard historical record of correspondences between.

90. Lu Longqi, Sanyuang nijt (Diary from Three Fish Hall, written 1659–82) (Taipei: Shangwu Yinchuguan, 1962), B.113.
92. Yan Ruoji, Shang shu guwen shuzheng (Inquiry into the authenticity of the ancient text version of the documents, first printed 1745) (Tianjin: Wushi Kanben, 1796), 6b.79b–Siku quanshu edition, 6b.99b.
93. Yan, Shang shu guwen shuzheng, 6A.6b, 10a–b; Siku quanshu edition, 6A.8a, 13a–14a (note 92).
94. Fang Yizhi, Tongya (Comprehensive refinement, completed 1636, printed 1666), Siku quanshu edition, 11.23a.
95. Huang Zongxi, Poxie lun (Discussion confusing heterodoxy, seventeenth century), 5a, in Lichou yizheng bukan (A collection of [Huang] Lichou’s extant works, 1910) (Taipei: Long Yan Chuanshe, 1969), vol. 2.
celestial appearances and terrestrial events. In any case, "it has nothing to do with boundaries."{96}

Unlike Qing commentaries on most of the geometric and nonary cosmograms outlined above,97 the Qing critique of the Hetu and Luo shu was a major episode in the intellectual history of the era. This critique was an important aspect of the Qing repudiation of the cosmology and metaphysics associated with the dominant Lixue (Principle) school of Song Neo-Confucianism. The discrediting of the standard versions of these figures probably did more to subvert cosmology and cosmography in the traditional mode than did any other affair in the intellectual history of late traditional China.

As early as the fourteenth century, Confucian scholars pointed out the nonclassical provenance and heterodox associations of the interpretations of the Hetu and Luo shu accepted by the major Song Neo-Confucian cosmologists. They particularly questioned the identification of the Luo shu with the nine-palace formation.98 Seventeenth-century scholars such as Mao Qiling (1623–1716) meticulously exposed how such figures as the nonary Luo shu had been constituted through the arbitrary conflation of unrelated passages in various classical texts.99

But sixteenth- and seventeenth-century criticisms of the cosmographical Luo shu were not confined to such textual arguments. Gui Youguang (1507–71), for example, contended that any precise graphical or numerical representation of the Hetu or Luo shu, not just the nine-palace formation, distorted their true essence and significance. For the Hetu and Luo shu were really ubiquitous under heaven. They could not be satisfactorily delimited or depicted by a geometric figure,100 just as the ineffable Dao could not be adequately represented through words or signs.

The famous seventeenth-century scholar Huang Zongxi also attempted to distinguish the early classical Hetu and Luo shu from later cosmographical reconstructions and elaborations. But instead of affirming the cosmic ubiquity of these figures as had Gui Youguang, Huang argued for their mundaneness and specificity. According to Huang, the Hetu and Luo shu originally had no cosmological purport or significance. They were really only topographical maps and economic geographies used in high antiquity for administrative and tax purposes.101 Huang Zongyan (1616–86) similarly contended that in ancient times "the Hetu and Luo shu were geographical records that recorded the contours of mountains and rivers and the rates of land taxes."102 These seventeenth-century commentators thus reduced the Hetu and Luo shu, which Han and Song Neo-Confucians had interpreted as the sources of cosmic geometry and numerology, to the level of practical administrative tools and devices. In so doing, they radically subverted one of the primary bases of traditional cosmographical speculation.

These scholars did not, however, attempt to reconstruct the ancient geographical maps and records that, they claimed, were designated by the terms Hetu and Luo shu. Nor did they explain precisely how these charts were supposed to have functioned in the government of high antiquity. Their rejection of cosmographical interpretations of the Hetu and Luo shu did not, in other words, lead directly to the composition of more realistic geographical representations or records.

On the other hand, some of the principal seventeenth-century critics of traditional cosmographical conceptions, particularly Huang Zongxi, Gu Yanwu (1613–82), Hu Wei, and Yan Ruoju, contributed significantly to the revival of geographical studies in that era. Such scholars helped to establish geography as "a precise field of evidential inquiry" and "an important element of concrete studies" (shì xué) with applications in such areas as land reclamation and hydraulic works, as Elman has noted.103 A possible link between these scholars' cosmographical criticism and their empirical geographical studies may be found in their use and conceptualization of tū (a Chinese character that may mean anything from "chart" to "schema") not as cosmological diagrams but as realistic maps. The seventeenth century thus marked a change in the orientation toward space within the tradition of Confucian scholarship, from a concern with cosmological geometry to an emphasis on empirical geography.

96. Lu, Sanruyutang riji, B.46–47 (note 90).
97. I have not included accounts of Qing criticisms of the classical city plan and the mingtan, which in any case are only marginally relevant to the history of cartography.
98. Pi Xiurui (1850–1908), Jingxue lishi (History of classical studies, printed 1907), annotated Zhou Datong (Taipei: Yewin Yihshuguan, 1966), 291; idem, Jingxue tonglun (Comprehensive discussions of classical studies, printed 1907), 4 vols. (Taipei: He-Lo Tushu Chubanshe, 1974), 1:28; "Hetu Luo shu shuo" (Explanation of the Yellow River chart and Luo River writing) in Song Lian (1310–81), Song Wenxian gong quanjji (Complete collected writings of Song Wenxian, 1810), Sibu bengzhou edition, 36.3a.
99. Mao Qiling, Shang shu guangting lu (Record of a broad understanding of the documents, seventeenth century), Siku quanshu edition, 3.8b–10b.
100. "Yu ti lun" (Discussion of the diagrams associated with the [Book of] changes in Gui Youguang, Zhenchu xiansheng ji [Collected writings of [Gui] Zhenchuan], Sibu bengzhou edition, 1.1b, 3a–b.
102. Huang Zongyan, Yixue bianhuo (Exposé of delusions regarding the study of the [Book of] changes, seventeenth century), 5b–6a, in or 132 of Zhudai congshu (A collection of books from our illustrious era, 1876), ed. Zhang Chao.
COUNTERCOSMOGRAPHY AND ANTICOSMOGRAPHY IN QING THOUGHT

The seventeenth-century cosmographical reformation outlined above was confined largely to the sphere of high intellectual history. Throughout the Qing era, the premises and principles of geometric cosmovography continued to inform popular culture and even imperial ritual. But the seventeenth-century cosmological critiques apparently left their mark on fields as diverse as landscape painting, moral philosophy, and astronomical and geographical thought. At least there is a certain congruence between the sort of cosmos these critiques imagined and that conceived by several prominent Qing painters, philosophers, astronomers, and geographers.

Seventeenth-century landscape painters, in particular, might well have sympathized with the remark of the mid-Qing cosmological critic Zhang Huiyan (1761–1802) that "the ways of heaven and earth are invariably uneven and irregular." Modern historians of Chinese landscape painting have noted the "almost painful distortions" and "tortured forms" in late Ming and early Qing landscape art. In contrast, the work of one of the great Song-era masters, Li Cheng (919–67), has been aptly characterized as animated by a "conviction of a coherence and order underlying surface appearances in nature," the same conviction that inspired Song philosophers to erect the vast and orderly structure of the Neo-Confucian cosmology. A famous painting, Xishan xing lu (Travelers among streams and mountains), by Fan Kuan (active ca. 990–1030), a near contemporary of Li’s, likewise presents "a cosmological vision as grandiose and all-encompassing" as that found in the cosmographical diagrams devised by the great Song Neo-Confucian cosmologist Shao Yong (1011–77). Such grand visions of cosmic order and coherence were apparently no longer possible, or at least were not very convincing, in Qing times. Inasmuch as Chinese landscape paintings were often conceived as cosmograms, schematic representations of heaven and earth, this is surely a significant development in the history of Chinese cosmographical thought, not just in the aesthetics of landscape painting.

A departure from the values of order, regularity, and symmetry that informed Neo-Confucian cosmology and traditional cosmography is also evident in the moral philosophy of the Qing era. Whereas Song Neo-Confucians regarded imbalances and asymmetries in the constitution of the cosmic qi, the energetic pneuma, as the cosmological source of evil in the world, some Qing philosophers accepted and even celebrated such irregularities. Yan Yuan (1636–1704), for example, remarked that deviation from the mean was potentially as moral a position as balance and centrality. For "although open and obstructed, straight and bent all have their differences, the pneuma and pattern that fills the universe is the same everywhere." Hence proper moral cultivation might begin from any point on the moral map, not just the mean position. Yan, indeed, included several such maps in his Cunxing bian (Treatise on preserving the nature) as a guide to show how those with different endowments or propensities might improve their moral stance. Although these "maps" are not geographical in any sense, they do illustrate how graphic representations or tu came to be applied in moral philosophy as well as in the sciences of the heavens and the earth.

The seventeenth-century recognition of imbalance, asymmetry, and irregularity in the world and a preference for natural rather than geometric lines of division appear in the astronomical and geographical thought of the period, as well as in its landscape art and moral philosophy. These inclinations even influenced the Chinese reception of the European cosmography and astronomy introduced into late Ming China by Jesuit missionaries. Wang Fuzhi, for example, rejected the theory of the spherical earth propounded by the Jesuits, arguing that "since it is in some places level, in others steep, in some places recessed and in others convex, where lies its sphericity? . . . Thus from the earth’s inclines, irregularities, heights, depths, and vastness, it is clear that it has no definite form."

110. For graphic illustration of Yan Yuan’s moral maps, his seven "diagrams of human nature" (xing tu), see Yan, Cunxing bian, 2.24–33 (note 109). Some of these diagrams, with a more detailed explanation of their contents, may also be found in John B. Henderson, The Development and Decline of Chinese Cosmology (New York: Columbia University Press, 1984), 236.
Seventeenth-century scholars and astronomers criti-
cized European celestial cartography and calendrics on
similar grounds, arguing that Western astronomers had
overlooked natural irregularities and anomalies in their
quest for geometric order and mathematical precision.
Wang Xichan (1628–82), for example, contended that the
Western division of the celestial sphere into 360 degrees
was an unnaturally neat schema whose only merit was
that it aided computation.112 Like other prominent
scholar-astronomers of his era, Wang preferred to me-
asure the great circles of the sphere by 365¼ degrees (cor-
responding to the number of days in a tropical year) as
Chinese astronomers had done since the Han era. The
units in this cartographical schema corresponded to a
natural measure of celestial time and space, the sun’s daily
movement on the ecliptic, even though they added up to
a rather irregular and unwieldy sum. Abandoning this
natural measure for an artificially uniform schema, said
Wang Fuzhi, would be as senseless as arbitrarily rounding
off the lengths of Chinese dynasties in order to produce
historical units of uniform duration.113

Both Wang Xichan and Mei Wending (1633–1721)
raised similar arguments against the Western solar cal-
endar introduced by Jesuit missionaries into seventeenth-
century China. They objected particularly to the constitu-
tion of the months in the Western calendar, pointing
out that they did not correspond to lunations or any other
natural cycle but were merely conventional divisions of
the solar year.114 The Chinese lunisolar calendar, these
scholar-astronomers admitted, had major drawbacks,
particularly the problem of intercalation. But the native
calendar at least made it possible for cartographic and
calendrical standards to conform to natural divisions and
cycles, in this case those of the sun and the moon.

Some Ming and Qing scholars posed yet more radical
kriticsm of both traditional Chinese and contemporary
Western cosmographical standards. They did not stop
with the contention that demarcations of space and time
should follow naturally irregular contours and cycles.
Instead, they went on to devise a sort of anticosmography
or anticartography that looked askance at the formula-
tion or imposition of clear, definite boundaries of any
sort—spatial, temporal, or cosmographical. Wang Ting-
xiang (1474–1544), for example, objected to a Han-era
cosmologist’s division of the year into two finely disting-
ished units of yin and yang months (corresponding to
the cold and hot seasons, respectively) on the grounds
that these two pneumatic powers were inextricably inter-
mingled: “There was never a case of pure yin without
yang or pure yang without yin.”115 Lu Kun (1536–1618)
asserted that the famous circular diagram of the yin and
yang that depicts them as separated by an S-shaped curve
also distorts the face of reality, for the interactions
between the yin and yang are too subtle to be portrayed
graphically.116 Even heaven and earth, said Fang Yizhi,
mutually interpenetrate in such a way as to preclude
drawing a sharp line of distinction between the two.117

Thus the cosmographical ideas of late Ming and Qing
scholars contravened those that dominated earlier cos-
mographical thought in China. Yet there are some
Chinese antecedents for these critics’ departures from the
schematic cosmographical conceptions of their orthodox
predecessors. One of these might be found in Chinese
gnomancy, with its preference for naturally undulating
and meandering lines, as noted above. Philosophers asso-
ciated with Daoism, who celebrated the anomalous, the
irregular, and even the freakish aspects of nature, might
also have struck a responsive chord with seventeenth-
century cosmological critics, some of whom wrote com-
mentaries on the Daoist classics. Those who did so, or
were otherwise familiar with heterodox literature, might
well have appreciated the following passage from an
important syncretic text of the fourth century A.D., the
Baopuzi ([Book of] the master who embraces simplicity):

Life and death, beginning and end, are indeed the great
laws of the universe. Yet the similarities and differ-
ences of things are not uniform. Some are this way
and some are that. Tens of thousands of varieties are
in constant change and transformation, strange and
without any definite pattern. Whether things are this
way or that, and whether they are regular or irregular
in their essential and subsidiary aspects, cannot be
reduced to uniformity.118

But unlike Daoist philosophers, Qing scholars some-
times attempted to apply such principles and precepts
practically to the sciences of the heavens and the earth,
particularly astronomy and geography. Whereas Browne
saw quinconxes everywhere, “in Heaven above ... in

112. “Zi xu” (author’s preface) of Wang Xichan, Xiaoxan xingfa
([Wang] Xiaoxan’s new system, 1663), in Xiaoxan yishu (Surviving works
of [Wang] Xiaoxan, comp. ca. 1682), 1.2b, in ce 31 of Muxi xuan cong-
shu (A collection of books from Muxi Studio), comp. Li Shengduo, 40
vols. (1883–91).

114. Wang, Xiaoxan xingfa, 1.2a–3a (note 112); Mei Wending, Lixue
yuwen (Queries on astronomical studies, presented 1702), pt. 2, in Meishi
congshu jiayao (Epitome of Mei’s collected works, printed 1771), ed.
Mei Gucheng (d. 1763) (Taipei: Youen Yinshuguan, 1971), 47.1b.

115. Wang Tingxiang, jiaozang ji (Writings for the family repository,
published ca. 1636–37), in Wang Tingxiang zhexue xuanji (Selected
philosophical works of Wang Tingxiang, 1965) (Taipei: He-Lo Tushu
Chubanshe, 1974), 167.

116. Lo Kun, Shenyin yu (Groaning words, 1593) (Taipei: He-Lo
Tushu Chubanshe, 1974), 1.53.

117. Fang Yizhi, Dongxi juan (The adjustment of things, 1653) (Beijing:

118. Ge Hong (283–343), Baopuzi, Sihu beiyao edition, pt. 1 of 8,
2.2a. I have followed the translation of this passage given in Sources
of Chinese Tradition, 299 (note 17).
earth below,” and Han-era cosmographers applied the nonary square, the nine-palace formation, to the ordering of practically every realm of space, some Ming and Qing scholars regarded anomaly (cha) and irregularity (buqi) as constitutive of the structure of space and time. Anomalies appeared in the heavens in such forms as the precession of the equinoxes, the “annual difference” (sui-cha) between the lengths of the sidereal and tropical years, the inequalities of solar and lunar motion, and the retrograde motion of the planets. On the earth, irregularities took the form of topographical peculiarities and the historical changes in landforms and landscapes that so disturbed seventeenth-century scholars like Gu Yanwu. Such anomalous movements were not simply complicating factors for which adequate adjustment could be made in calculation. Rather, they were woven into the fabric of the cosmos. They made it unlikely that any cosmographical, astronomical, or geographical model, not just the nonary grid, could be serviceable for very long at a time.

CONCLUSION

Despite the cosmological criticisms expressed by seventeenth-century scholars, vestiges of geometric cosmography and even of the nonary grid have survived in modern Chinese culture. Even the centerpiece of modern-day Beijing might well be regarded as modeled on the nonary square, or at least on the Greek cross. At the center of the capital is the largest public square in the world. To the north stand the monumental Gate of Heavenly Peace (Tiananmen) and the old imperial palace, and due south loom the equally massive Front Gate (Qianmen) and the Mao Zedong Memorial Hall. Symmetrically disposed to the east and west of the square are the Museum of Chinese History and the Great Hall of the People. The total effect of this complex is overpowering in its monumental symmetry.

Inasmuch as most of the structures in this array, including the large public square that stands at the center, were established or erected under Communist rule, their disposition might well be taken as evidence that China’s contemporary leaders, like their imperial predecessors, regard the proper ordering of space as an effective means of political control. Indeed, before the advent of such modern-day mass media as newspapers, radio, and television, the ordering of space may well have been the most widely employed instrument of political and cultural propaganda in many civilizations, especially those of South and East Asia. Insofar as the traditional cosmographical orientations outlined in this chapter persist among the folk in such cultures, cosmographical models may still be used to accomplish political goals like enhancing the legitimacy of the ruling powers who have created a model of heaven on the surface of the earth, an order not to be marred by such asymmetrical monstrosities as a goddess of democracy.

119. For illustrations of this viewpoint, which was anticipated by earlier Chinese astronomers, see Wang Tingxiang, Shenyan (Prudent words, 1533), in Wang Tingxiang zhexue yuanji, 56 (note 115); and Jiang Yong (1681–1762), Shu xue (Mathematical studies, ca. 1750) (Shanghai: Shanghai Yinshuguan, 1936), 1.26, 28–29.
120. For Gu’s comments on how the physical geography of China, particularly of the once prosperous Northwest, had changed since antiquity, see his essay on the “jiu zhou” (nine regions) in Yuanchaoben Rizhi lu (The original manuscript version of the Record of daily knowledge, 1958) (Taipei: Minglun Chubanshe, 1970), 23.626–27.
121. There is a superficial resemblance between Qing scholars’ anticosmography and contemporary chaos theory, which poses "a geometry of the pitted, pocked, and broken up, the twisted, tangled, and intertwined." For just as Qing scholars elevated anomalies and irregularities to the status of ultimate principles, so chaos theorists look upon "pits and tangles" as "more than blemishes distorting the classic shapes of Euclidean geometry. They are often the keys to the essence of a thing." James Gleick, Chaos: Making a New Science (New York: Viking, 1987), 94.