Chapter 8

Continuity

8.1 Compositions with Sequences

8.1 Definition (Composition) Let a:n — a(n) be a complex sequence.
Let g: S — C be a function such that dom(g) =S C C, and a(n) € S for all
n € N. Then the composition goa is the sequence such that (goa)(n) = g (a(n))
for all n € N. If a is a sequence, I will often write a,, instead of a(n). Then

a={a,} = goa={g(a,)}

SOSEES

for all z € C\ {—1}, then

8.2 Examples. If

1
and g(z) = 12

; 1 { 2" } {1 2 4 }
oOf = ——p = == = = -3
g 1+ 5 on 41 2’3’5

Figure a) below shows representations of z,v o x and K o x where

2 4 4 — 213\
z(n) = xn:g—i-gi—i—( 55 Z) for all n € N,
1
v(z) = 2 for all z € C\{0},
K(z) = z+ ;—‘ for all z € C\{0}.

159
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2 4 2 4
I leave it to you to check that {z,} — R + Si’ and {v(z,)} — v (5 + 51),

2 4
and {K(z,)} = K (6 + gz) Figure b) shows representations for ¢ and K oa

where

7 23i\"
M@—%—(25>,

and K is defined as in (8.3). Here it is easy to check that {a,} — 0. From the
figure, {K(a,)} doesn’t appear to converge.

N %/\

{zn} {v(zn)} {K(2n)}

figure a) Sequence and compositions

{an} {K(an)}

figure b) Sequence and composition
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8.4 Exercise. Let a be a non-zero complex number with 0 < |a| < 1. Let

n

for all n € N.

Jalm) ="+ 2

Under what conditions on « does f, converge? What does it converge to?
(Your answer should show that the sequence {K(a,)} from the previous ex-
ample does not converge.)

8.5 Definition (Complex function.) By a complez function I will mean
a function whose domain is a subset of C, and whose codomain is C. I will
consider functions from R to R to be complex functions by identifying a
function f: S — R with a function f: S — C in the expected manner.

8.2 Continuity

8.6 Definition (Continuous) Let f be a complex function and let p € dom(f).
We say f is continuous at p if

for every sequence z in dom(f) (r —-p = foz — f(p));
ie., if
for every sequence {z,} in dom(f) ({z.} = p = {f(z.)} — f(p)).

Let B be a subset of S. We say f is continuous on B if f is continuous at ¢
for all ¢ € B. We say f is continuous if f is continuous on dom(f); i.e., if f is
continuous at every point at which it is defined.

8.7 Examples. If f(z) = z for all z € C, then f is continuous. In this case
f ox =z for every sequence x so the condition for continuity at p is

T—p = T —Dp.

If a € C, then the constant function @ is continuous since for all p € C, and
all complex sequences z,

T —p= aox=a—a=a(p).
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Notice that Re and Im (Real part and imaginary part) are functions from
C to R. In theorem 7.39 we showed if x is any complex sequence and L € C,
then
z — L = Re(z) — Re(L)

and
z — L = Im(z) — Im(L).

Hence Re and Im are continuous functions on C.
8.8 Theorem. If abs and conj are functions from C to C defined by

abs(z) = |z| forallz€ C
conj(z) = z* forall z € C,

then abs and conj are continuous.
Proof: Let a € C and let z be any sequence in C such that {z,} — a; i.e.,
{z, — a} is a null sequence. By the reverse triangle inequality,

|20 = a| 2 [zn| = |a]

and

|0 — af = a = zn| > [a] = |2,
so we have

—|zn — af < x| —la| < |zn —a
and hence

||Zn| = lal| < |z —al.

It follows by the comparison theorem that {|x,| — |a|} is a null sequence; i.e.,
{|zn|} — |a|. Hence abs is continuous.
Since |z} —a*| = |(z, —a)*| = |z, — al, the comparison theorem shows that

{,} = a = {2z} = a";

i.e., conj is continuous. ||
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8.9 Example. If
z for z € C\{0},

f(z):{l for z =0,

then f is not continuous at 0, since

(D)= (L)oo

Notice that to show that a function f is mot continuous at a point a in its
domain, it is sufficient to find one sequence {z,} in dom(f) such that {z,} — a
and either {f(z,)} converges to a limit different from f(a) or {f(z,)} diverges.

8.10 Theorem (Sum and Product theorems.) Let f, g be complex func-
tions, and let a € dom(f)Ndom(g). If f and g are continuous at a, then f+g,
f—g, and f - g are continuous at a.

Proof: Let {x,} be a sequence in domain (f + g) such that {z,} — a. Then
zn € dom(f) for all n and z,, € dom(g) for all n, and by continuity of f and
g at a, it follows that

{f(zn)} — f(a) and {g(2n)} = g(a).

By the sum theorem for sequences,

{(f +9)(zn)} = {f(@n) + g(za)} = f(a) + 9(a) = (f + 9)(a).

Hence f + g is continuous at a. The proofs of continuity for f — g and f - g
are similar.

8.11 Theorem (Quotient theorem.) Let f, g be complex functions and let

a € dom <i> If f and g are continuous at a, then i 1$ continuous at a.
g g

8.12 Exercise. Prove the quotient theorem. Recall that

dom <f> _ (dom(f) N dom(g)) \{z € dom(g): g(2) = O}.
g
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8.13 Theorem (Continuity of roots.) Letp € Z>; and let f,(z) = v for
all x € [0,00). Then f, is continuous.

Proof: First we show f, is continuous at 0. Let {z,} be a sequence in [0, c0)
such that {xz,} — 0; i.e., such that {z,} is a null sequence. Then by the

1
root, theorem for null sequences (Theorem 7.19), {xﬁ} is a null sequence; i.e.,

{folzn)} = {xé} — 0 = f,(0), so f, is continuous at 0.

Next we show that f, is continuous at 1. By the formula for a finite
geometric series (3.72), we have for all z € [0, c0)

p—1
=lz—1> 2" > [z —1]. (8.14)
=0

2~ 1] =

(x — 1)2:&

1 1 1
If we replace x by y» in (8.14), we get |y — 1| = |(y?)? — 1| > |y» — 1], i.e.,
\y% —1] < |y —1| for all y € [0, 00).
Let {y,} be a sequence in [0,00). Then
1
[(yn)? — 1] < |yn — 1| for all n € N,
S0

(g} =1 = lya—1/ =0
= |(ya)? — 1] = 0 (by comparison theorem for null sequences)
= {(m)?} =1
= {fp(ga)} = f(1).

Hence f, is continuous at 1.

Finally we show that f, is continuous at arbitrary a € (0,00). Let a € [0, 00),
and let {z,} be a sequence n [0,00). Then

1 1
{tm} =0 = —{z}—-a=1
a a

Zn
== {—}—)1
a
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{(Zn) } — 1 (since f, is continuous at 1)
a

Zn
a,p{(a) }—)av-l
{()?} = 02
{fo(zn)} = fy(a).
Thus f, is continuous at a. ||

8.15 Definition (Composition of functions.) Let A, B, C, D be sets, and
let f: A — B, g:C — D be functions. We define a function g o f by the rules:

domain (go f) = {z € domf: f(z) € dom(g)}
(g0 f)(x) = g(f(z)) for all z € dom(g o f).
8.16 Examples. Let f:C — C, g: C — C be defined by

f(z) = Z2+1forallzeC
g(z) = (1+z") forall z € C.

Ll

Then

(fog)(z) = fl9(z)=(1+2)P+1=1+22"+ (") +1
= 242"+ (2%)%
and

(9o f)2)=g(f(2)) =1+ (Z+1) =1+ (") +1=2+ (")

If f:R— R and g:[—1,00) — R are defined by
fiz)y=2>—1forallz e R

n
e g(z) =1+ for all z € [—1, 00),
then
(fog)(z) = (\/1+—$)2 —1for all z € [-1, 00)
= 1l4+xz—1forallz € [-1,00)
= gz for all x € [—1,00)
and

(go f)(z) =4/1 2_1) =22 =|z| for all z € R.
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8.17 Theorem (Compositions of continuous functions.) Let f, g be
complex functions. If f is continuous at a € C, and g is continuous at f(a),
then g o f is continuous at a.

Proof: Let {z,} be a sequence in dom(g o f) such that {z,} — a. Then for
all n € N, we have z,, € dom(f) and f(z,) € dom(g). By continuity of f at
a, {f(zn)} — f(a), and by continuity of g at f(a), {g (f(z,))} = g (f(a)). |

8.18 Example. If f(z) = vz?+ 3 for all x € R, then f is continuous (i.e.,
f is continuous at a for all ¢ € R.)

8.19 Exercise. Let f:N — C be defined by f(n) =n! for allm € N. Is f
continuous?

8.3 Limits

8.20 Definition (Limit point.) Let S be a subset of C and let a € C. We
say a is a limit point of S if there is a sequence f in S\{a} such that f — a.

8.21 Example. Let D(0,1) = {z € C:|z| < 1} be the unit disc, and let
a € C. We'll show that « is a limit point of D(0,1) if and only if |a| < 1.

Proof that (« is a limit point of D(0,1)) = || < 1.

Suppose « is a limit point of D(0,1). Then there is a sequence {a,} in
D(0,1)\ {a} such that {a,} — «. Since the absolute value function is contin-
uous, it follows that {|a,|} — |a|. Since a, € D(0,1) we know that |a,| < 1
(and hence |a,| < 1.) for all n € N. By the inequality theorem for limits of
sequences, lim{|a,|} <1, ie. |a| < 1.

Proof that (|a] < 1) = « is a limit point of D(0,1).

Case 1: Suppose 0 < |a] < 1. Let fo(n) = %a for all n € Z>;. Then
n >
|fa(n)| =

n <" <1so fa(n) € D(0,1), and clearly f,(n) # a.

o

n+1 “n+1
1
Now {fa(n)}n>1 = 3T o — @, so « is a limit point of D(0,1).
n n>1

Case 2: a = 0. This case is left to you.
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8.22 Exercise. Supply the proof for Case 2 of example 8.21; i.e., show that
0 is a limit point of D(0,1).

8.23 Example. The set Z has no limit points. Suppose o € C, and there
is a sequence f in Z\{a} such that f — . Let g(n) = f(n) — f(n+ 1) for all
n € N. By the translation thoerem ¢ — a — a = 0; i.e., g is a null sequence.
Let N, be a precision function for g. Then for all n € N,

1
2
= |f(n) - fn+ 1) <5

n2N,(3) = lotl<

Now |f(n) — f(n+1)| € N, so it follows that

n> N, (2) = [f(n) — fln+ )| =0 = f(n) = f(n+1)
2

oemr= ()

This contradicts the fact that f(n) € Z\{a} for all n € N. ||

and hence

8.24 Definition (Limit of a function.) Let f be a complex function, and
let a be a limit point of dom(f). We say that f has a limit at a or that liénf

erists if there exists a function F' with dom(F') = dom(f) U {a} such that
F(z) = f(2) for all z € dom(f)\{a}, and F is continuous at a. In this case
we denote the value of F'(a) by lign f or ll_I)I(ll f(2). Theorem 8.30 shows that

this definition makes sense. We will give some examples before proving that
theorem.

8.25 Warning. Notice that li(gn f is defined only when a is a limit point of
dom(f). For each complex number 3, define a function Fjz : N U {%} — C by

n! if n € N,
Fs(n) = {5 itn =L,
Then Fjp is continuous, and F'(n) = n! for all n € N. If I did not put the
requirement that a be a limit point of dom(f) in the above definition, I'd have

1
limn! = Fg(=) =B for all B € C.
1 ’62

n—>§

I certainly do not want this to be the case.
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2

1
8.26 Example. Let f(z) = z 1 for all z € C\{1} and let F'(2) =z +1
Z E—
for all z € C. Then f(z) = F(z) on C\{1} and F is continuous at 1. Hence

li{nf:F(l):Z

8.27 Example. If f(z) = {; ior #1 1
or z =

F: z+— z agrees with f on C\{1} and is continuous at 1.

, then li{n f =1, since the function

8.28 Example. If f is continuous at a, and a is a limit point of domain f,
then f has a limit at a, and

lim f = f(a).

8.29 Example. Let f(z) = % for all z € C\{0}. Then f has no limit at 0.

Proof: Suppose there were a continuous function F' on C such that F(z) = f(z)
' 1

on C\{0}. Let {a,} = {ni 1} and {b,} = {n—ﬂ} Then {a,} — 0 and

{b,} — 0 and so

=t

F(0) =1lim{F(a,)} = lim {”—“} =lim{-1} = —1

n+1

and also )

F(0) = im{F(b,)} = lim {"T“} =lim{1} = 1.

n+l
Hence we get the contradiction —1 = 1. ||

8.30 Theorem (Uniqueness of limits.) Let f be a complex function, and
let a be a limit point of dom(f). Suppose F,G are two functions each having
domain dom(f) U {a}, and each continuous at a, and satisfying f(z) = F(z)
= G(z) for all z € dom(f)\{a}. Then F(a) = G(a).

Proof: F'— G is continuous at a, and F'— G = 0 on dom(f)\{a}. Let {a,} be
a sequence in dom(f)\{a} such that {a,} — a. Since F' — G is continuous at
a, we have

{(F - G)(an)} = (F = G)(a);



8.3. LIMITS 169

ie.,

{0} = F(a) = G(a),
so F(a) — G(a) = 0; i.e., F(a) = G(a). |
8.31 Exercise. Investigate the following limits. (Give detailed reasons for

your answers). In this exercise you should not conclude from the fact that I've
written lin%) f(w) that the implied limit exists.
w—r

a) lim ¢2.
t—>4
b) lim n!.
n—2
1 1
c) lim|z|? (— - —)
2—0 z z*
1_1
a

8.32 Theorem. Let f be a complex function and let a be a limit point of
dom(f). Then f has a limit at a if and only if there exists a number L in C
such that for every sequence y in dom(f)\{a}

y—>a=— foy— L. (8.33)

In this case, L = lign f-

Proof: Suppose f has a limit at a, and let F' be a continuous function with
dom(F) = dom(f) U {a}, and F(z) = f(z) for all z € dom(f)\{a}. Let y
be a sequence in dom(f)\{a} such that {y,} — a. Then y is a sequence in
dom(F), so by continuity of F,

{f(un)} ={F(yn)} = Fl(a).

Hence, condition (8.33) holds with L = F(a).
Conversely, suppose there is a number L such that

for every sequence y in dom(f)\{a}, (y > a = foy — L.). (8.34)
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Define F':dom(f) U {a} — C by

ri =1 g

I need to show that F' is continuous at a. Let z be a sequence in dom(F’) such
that z — a. I want to show that FF'oz — L.

Let w be a sequence in dom(f) \ {a} such that w — a. (Such a sequence
exists because a is a limit point of dom(f)). Define a sequence y in dom(f)\{a}
by

_[z(n) ifz(n)#a
y(n) {w(n) if z(n) = a.
Let N,_; and N,_; be precision functions for z — @ and w — a respectively.
Let
M(e) = max(N,_;(g), Ny_a(e)) for alle € R*.

Then M is a precision function for y — @, since for all e € R* and all n € N,

n > M(e)
{n >N, a(e) = |2(n) —a|<e = |y(n) —a| <e ifz(n) #a
n> Ny_ale) = |w(n) —a|<e = |y(n) —a| <e if z(n) =a.

Hence y — a, and by assumption (8.34), it follows that f oy — L. I now
claim that F'oz — L, and in fact any precision function P for foy — L is a
precision function for F oz — L. For alle € R" and all n € N,

n>Ple) = |f(yn)) - Ll <e

|F(2(n)) — L| = [f(y(n)) — L| <& if 2(n) 7

— { IF(2(n)) — L| = |[F(a) = L| =0 < ¢ if 2(n)

a
a.
This completes the proof. ||

8.35 Example. Let

ry|z|
xt + 9?2

f(z) = flz+iy) = f((z,y)) = + 4y for all z € C\{0}.

I want to determine whether f has a limit at 0, i.e., I want to know whether
there is a number L such that for every sequence z in C\{0}

z— 0= f(z) > L.
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If r € R and v € Q" then

"y r-x-x7 . v 954(14_952(7—2)) Tl = 1+ 22002 T
f((z,27)) = A T 12 - 2 -
xQV(aﬂ(?—V) 1) +iz’ = e 11 1 + 1z

Since |2 — | is either 2 —  or v — 2, we have

x|2_7|

f((%,l‘fy)) == W + 1z,

For each v € QT, define a sequence Zy by

1 1
Zy 1M (—,—) foralln e Z™.
n-nY

Then 2z, — 0, and
1

(o) = —27 4 L

et g W
Hence
fozy, =0 if y#2
1
foz7—>§ if y=2.
It follows that f has no limit at 0.
Let yo € R. It is clear that f maps points on the horizontal line y =

to other points on the line y = y,. I'll now look at the image of the parabola
y = cz? under f.

2
f(z +icx?) = m—i—iczﬁz m(
T

2
1 2t ) + 2cx” for x # 0.

1+¢2

So f maps the right half of the parabola y = cz? into the vertical line

—c
T 1+¢2
Parabolas with ¢ > 0 get mapped to the upper half plane, and parabolas
with ¢ < 0 get mapped to the lower half plane. The figure below shows some
parabolas and horizontal lines and their images under f.

and f maps the left half of the parabola to the line z =
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1 . 1

\ AN
W [/
. g

/AN
[T NN
[ AN
7T Y !

Discontinuous Image of a Cat

/
\

8.36 Entertainment. Explain how the cat’s nose in the above picture gets
stretched, while its cheeks get pinched to a point. (Hint: The figure shows the
images of some parabolas y = cx? where |c| > 1. What do the images of the
parabolas y = cz? look like when |¢| < 17?)

8.37 Example. It isn’t quite true that “the limit of the sum is the sum of
the limits.” Let

f(z) = +/z forx€[0,00)
g(z) = v/—zforx € (~00,0].

Then from the continuity of the square root function and the composition
theorem,

hénf =0 zhgng.
But lién(f + g) does not exist, since dom(f + ¢g) = {0} and 0 is not a limit
point of dom(f + g).

8.38 Theorem (Sum and product theorem.) Let f,g be complex func-
tions and let a be a limit point of dom(f) Ndom(g). If lim f and limg ezist,
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then lic{n(f +9), lign(f —g) and lign(f - g) all exist and

lign(f +g9) = ]ignf +limg,

lm(f —g) = limf—limg,
lign(f -g) = liénf . liéng.

If a is a limit point of dom (—) and lim g # 0 then lim / exists and
a a g

lim f !

1m

lim<i>= s
a \yg lim g

Proof: Suppose that lign f and lién g exist. Let = be any sequence in

dom(f + g)\{a} such that x — a. Then z is a sequence in both dom(f) and
dom(g), so
im{ f(z,)} = lim f and lim{g(z,)} = lim g.

By the sum theorem for limits of sequences,
im{(f + g)(2n)} = Hm{/ ()} + lim{g(2,)} = lim / + limg.

Hence f + ¢ has a limit at a, and lién(f +g) = liénf + lign g.
The other parts of the theorem are proved similarly, and the proofs are left
to you. ||

8.39 Exercise. Prove the product theorem for limits; i.e., show that if f, g
are complex functions such that f and ¢ have limits at a € C, and if a is a
limit point of dom(f) N dom(g), then f - ¢ has a limit at a and

lign(f cg) = lim f - limg.

8.40 Definition (Bounded set and function.) A subset S of C is bounded
if S is contained in some disc D(0, B); i.e., if there is a number B in R* such
that |s| < B for all s € S. We call such a number B a bound for S.

Now suppose f:U — C is a functiom from some set U to C and A is a
subset of U. We say f is bounded on A if f(A) is a bounded set, and any
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bound for f(A) is called a bound for f on A. Thus a number B € R" is a
bound for f on A if and only if

|f(a)] < B for all a € A.

We say f is bounded if f is bounded on dom(f). If f is not bounded on A, we
say f is unbounded on A.

8.41 Examples. The definition of bounded sequence given in 7.41 is a
special case of the definition just given for bounded function.

Let f(z) = for all z € C\{+£:}. Then f is bounded on R since

1+ 22

f(2)] < <1 forall z € R.

1+ 22

However, f is not a bounded function, since

(o) -

for alln € Z5;.

Let

xt 492
0 for z = 0.
(F is the real part of the discontinuous function from example 8.35.)
I claim F'is bounded by 1. For all a,b € R,

F(z)={ WL for 2 € O\{o)

la| [b] < max(|al, [b])* < a® + 0%,
(NOTE: max(|al, |b])? is either a® or b*.) Hence if (a,b) # (0,0), then

ab
a? + 02| —

To prove my claim, apply this result with a = z|z| and b = y.
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8.42 Exercise. Show that

ab
a? + b?

IN

1
2

for all (a,b) € R x R\{(0,0)}, and that equality holds if and only if |a| = |b|.
(This shows that 3 is a bound for the function F' in the previous example.)
HINT: Consider (|a| — |b])%.

8.43 Exercise. For each of the functions f below:

1) Decide whether f is bounded, and if it is, find a bound for f.

2) Decide whether f is bounded on dom(f)ND(0, 1), and if it is, find a bound
for f on dom(f) N D(0,1).

3) Decide whether f has a limit at 0, and if it does, find lign f.

Here z = (z,y) = = + iy.

a) f(z) = . for all z € C\{0}.

2 4 y?

2

b) f(z) = xfny for all z € C\{0}.

2

¢) f(z) = (Z; " for all 2 € C\{0}.

d) f(z) = zi i zi for all z € R\{0}.
¢) f(z) = 7”’21_1 for all 2 € [—1,00)\{0}.



