Appendix A

Hints and Answers

Exercise 3: The Rhind value is 256/81 = 3.1604...

- Exercise 1.7: Look at the boundary.
- **Exercise 1.10:** If a set has no endpoints, then it contains all of its endpoints and none of its endpoints.

Exercise 2.10: $1^3 + 2^3 + \cdots + n^3 = \frac{n^2(n+1)^2}{4}$.

- **Exercise 2.18:** $\operatorname{area} T(a) = \frac{2}{3}a^{\frac{3}{2}}.$
- **Exercise 2.27:** $.027027027... = \frac{1}{37}$.

Exercise 2.36: I let $O_j = B(a^{\frac{j}{N}}, a^{\frac{j-1}{N}}; 0, a^{-\frac{2j}{N}})$ and $I_j = B(a^{\frac{j}{N}}, a^{\frac{j-1}{N}}; 0, a^{-\frac{2(j-1)}{N}})$.

Exercise 3.20: Recall $(R \Longrightarrow S) \iff (S \text{ or not } R)$.

Exercise 5.61: $S_1^{ab}[\frac{1}{t}] = S_1^a[\frac{1}{t}] \cup S_a^{ab}[\frac{1}{t}]$. (Draw a picture.)

- **Exercise 5.80:** Consider a partition with a fairly large number of points.
- Exercise 6.33: The assertion is false.
- **Exercise 6.59:** (part e) The limit is $\frac{1}{3}$. It simplifies matters if you factor both the numerator and the denominator. The sequence in part g) is a translate of the sequence in part f).

Exercise 6.69: All four statements are false.

Exercise 6.94: a) $(1 + \frac{3}{n})^{2n} = ((1 + 3/n)^n)^2$.

Exercise 6.97: $(1 - \frac{c}{n})^n = \frac{(1 - \frac{c^2}{n^2})^n}{(1 + \frac{c}{n})^n}.$

Exercise 7.16: Take $c = \frac{b}{a}$ in lemma 7.13.

Exercise 7.18: $A_0^a f = A_0^{\frac{1}{n}} f + A_{\frac{1}{n}}^a f$. Show that $A_0^{\frac{1}{n}} f$ is small when *n* is large.

Exercise 8.14: $e^{\frac{x+1}{x}} = 1 + \frac{1}{x}$. Not all of these integrals exist.

- **Exercise 8.16:** Show that $\sum (f, P, S) \leq \sum (g, P, S)$ for every partition P of [a, b] and every sample S for P.
- **Exercise 8.28:** g is the sum of an integrable function and a spike function.
- **Exercise 8.32:** f is not piecewise monotonic. It is easy to see that f is integrable on [1, 2]. If you can show it is integrable on [0, 1] then you are essentially done.

Exercise 8.34: b) $(b-a)^3/6$.

- **Exercise 8.41:** For any partition P of [0.1] you can find a sample S such that $\sum (R, P, S) = 0.$
- **Exercise 8.46:** In equation 8.44, replace r by $\frac{1}{R}$, and replace a and b by RA and RB.

Exercise 8.48: $\alpha(E_{ab}) = \pi ab$.

Exercise 8.50: If a = 1/4 then both areas are approximately 3.1416

Exercise 8.55: area = 4π .

- **Exercise 8.57:** The areas are 5/12 and 1.
- **Exercise 8.58:** The area is $\frac{37}{12}$. Some fractions with large numerators may appear along the way.
- **Exercise 9.20:** The last two formulas are obtained from the second by replacing t by t/2.

- **Exercise 9.29:** I used exercise 9.28 with $x = \frac{\pi}{6}$ to find $\cos(\frac{\pi}{6})$. You can also give a more geometric proof.
- Exercise 9.44: You will need to use (9.24).
- **Exercise 9.48:** $\alpha(S_0^{\pi}(\sin)) = 2.$
- **Exercise 9.49:** area = $\sqrt{2}$.

Exercise 9.69: $\int_0^{\pi/2} \sin(x) dx = 1; \int_0^{\pi/2} \sin^2(x) dx = \pi/4; \int_0^{\pi/2} \sin^4(x) dx = 3\pi/16.$

- **Exercise 10.25:** $f'(a) = -\frac{1}{a^2}$.
- Exercise 10.26: See example 10.9 and 9.26.
- **Exercise 10.27:** $f'(a) = \frac{1}{(a+1)^2}$.
- **Exercise 10.28:** y = 2x 4; y = -6x 4.
- Exercise 11.6: I used formula 9.25
- **Exercise 11.15:** $\frac{d}{dt}(|-100t|) = \frac{100t}{|t|}$.
- **Exercise 11.21:** You can use the definition of derivative, or you can use the product rule and the reciprocal rule.

Exercise 11.24: $f'(x) = \ln(x), g'(x) = \frac{ad-bc}{(cx+d)^2}, k'(x) = 2(2x+3)(x^2+3x+11)$

Exercise 11.29: $(g \circ (g \circ g))(x) = ((g \circ g) \circ g)(x) = x$ for $x \in \mathbf{R} \setminus 0, 1$. If you said $(f \circ f)(x) = x$, calculate both sides when x = -1.

Exercise 11.40: Use the definition of derivative. h'(2) = 0.

Exercise 11.43: $g'(x) = -\tan(x), h'(x) = \tan(x), k'(x) = \sec(x), l'(x) = -\csc(x),$ $m'(x) = 9x^2 \ln(5x), n'(x) = \frac{\sqrt{x^2+1}}{x}$ (It requires a lot of calculation to simplify n'), $p'(x) = \frac{x^2}{x+4}, q'(x) = \sin(\ln(|6x|)).$

Exercise 12.14: d) Such a function k does exist.

Exercise 12.15: a) Use extreme value property.

Exercise 12.27: Proof is like given proof of corollary 12.26.

Exercise 12.31: Apply corollary 12.26 to F - G.

Exercise 12.35: Yes.

- **Exercise 12.36:** You can apply the chain rule to the identity f(-x) = f(x).
- **Exercise 13.14:** The function to minimize is $f(x) = \text{distance}((0, \frac{9}{2}), (x, x^2))$.
- **Exercise 13.15:** You may get a complicated equation of the form $\sqrt{f(x)} = \sqrt{g(x)}$ to solve. Square both sides and the equation should simplify.
- **Exercise 14.5:** Apply the intermediate value property to f fp.
- **Exercise 14.9:** One of the zeros is in [1, 2].
- **Exercise 14.10:** I showed that if temp(A) < temp(B) < temp(D), then there is a point Q in $DC \cup CA$ such that temp(Q) = temp(B).
- **Exercise 14.11:** if temp(A) < temp(B) < temp(C) < temp(D), find two points different from B that have the same temperature as B.
- **Exercise 14.17:** You may want to define some of these functions using more than one formula.
- **Exercise 14.41:** Use the extreme value property to get A and B.
- **Exercise 14.54:** $f'(x) = 2\sqrt{a^2 x^2}$; $h'(x) = \arccos(ax)$; $n'(x) = (a^2 + b^2)e^{ax}\sin(bx)$; $p'(x) = a^3x^2e^{ax}$.
- **Exercise 14.55:** It is not true that l(x) = x for all x. Note that the image of l is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Exercise 15.5: $g^{(k)}(t) = tf^{(k)}(t) + kf^{(k-1)}(t)$.

Exercise 15.8: Use the antiderivative theorem twice.

Exercise 15.9: $(fg)^{(3)} = fg^{(3)} + 3f^{(1)}g^{(2)} + 3f^{(2)}g^{(1)} + f^{(3)}g.$

Exercise 15.13: You will need to use a few trigonometric identities, including the reflection law (9.18).

Exercise 15.22: $h(t) = h_0 + v_0 t - \frac{1}{2}gt^2$.

Exercise 15.29: Use theorem 15.27 and corollary 12.26

- **Exercise 16.2:** You probably will not be able to find a "single formula" for this. My function has a local maximum at $\frac{1}{2n+1}$ for all $n \in \mathbb{Z}^+$.
- **Exercise 16.8:** The result is known if p < q. To get the result when q < p, apply 16.6 to f on [q, p].
- **Exercise 16.13:** Not all of these integrals make sense. K'(x) = 1 for all $x \in \mathbf{R}$. L'(x) = 1 for $x \in \mathbf{R}^+$. L'(x) = -1 for $x \in \mathbf{R}^-$. L(0) is not defined.
- **Exercise 17.16:** b) $-\ln(|\csc(e^x) + \cot(e^x)|)$; f) $\frac{1}{2}\ln(|\sin(2x)|)$. i) Cf example 9.68i.j) You did this in exercise 9.69.
- **Exercise 17.31:** b) $\frac{1}{2}e^x(\sin(x) \cos(x))$. When you do the second integration by parts, be careful not to undo the first. c) $x \arctan(x) \frac{1}{2}\ln(1+x^2)$. Let g'(x) = 1. d) and e) can be done easily without using integration by parts. f) If r = -1 the answer is $\frac{1}{2}(\ln(|x|))^2$.
- **Exercise 17.42:** c) Let $u = \sqrt{x}$. You will need an integration by parts. d) Let $u = \ln(3x)$. e) Remember the definition of 2^x .
- **Exercise 17.49:** a) $\frac{1}{2}a^2 \operatorname{arcsin}(\frac{x}{a}) + \frac{1}{2}x\sqrt{a^2 x^2}$. If you forget how to find $\int \cos^2(\theta) d\theta$, review example 9.53. Also recall that $\sin(2x) = 2\sin(x)\cos(x)$. b) $\ln(\frac{x+\sqrt{a^2+x^2}}{a})$. c) and d) do not require a trigonometric substitution.

Exercise 17.53: a) $\frac{5}{4}$. b) $\frac{\pi}{6}$. c) $\frac{4}{15}$.

Exercise 17.54: $\frac{2\pi}{3} + \sqrt{3}$.

Exercise 17.64: (g) $\ln(\sqrt{x^2 + 2x + 2} + x + 1)$. First complete the square, and then reduce the problem to $\int \frac{1}{\sqrt{u^2+1}} du$.