Appendix A

Hints and Answers

Exercise 3: The Rhind value is $256 / 81=3.1604 \ldots$
Exercise 1.7: Look at the boundary.
Exercise 1.10: If a set has no endpoints, then it contains all of its endpoints and none of its endpoints.

Exercise 2.10: $1^{3}+2^{3}+\cdots n^{3}=\frac{n^{2}(n+1)^{2}}{4}$.
Exercise 2.18: area $T(a)=\frac{2}{3} a^{\frac{3}{2}}$.
Exercise 2.27: $.027027027 \ldots=\frac{1}{37}$.
Exercise 2.36: I let $O_{j}=B\left(a^{\frac{j}{N}}, a^{\frac{j-1}{N}} ; 0, a^{-\frac{2 j}{N}}\right)$ and $I_{j}=B\left(a^{\frac{j}{N}}, a^{\frac{j-1}{N}} ; 0, a^{-\frac{2(j-1)}{N}}\right)$.
Exercise 3.20: Recall $(R \Longrightarrow S) \Longleftrightarrow(S$ or not $R)$.
Exercise 5.61: $S_{1}^{a b}\left[\frac{1}{t}\right]=S_{1}^{a}\left[\frac{1}{t}\right] \cup S_{a}^{a b}\left[\frac{1}{t}\right]$. (Draw a picture.)
Exercise 5.80: Consider a partition with a fairly large number of points.
Exercise 6.33: The assertion is false.
Exercise 6.59: (part e) The limit is $\frac{1}{3}$. It simplifies matters if you factor both the numerator and the denominator. The sequence in part g) is a translate of the sequence in part f).

Exercise 6.69: All four statements are false.

Exercise 6.94: a) $\left(1+\frac{3}{n}\right)^{2 n}=\left((1+3 / n)^{n}\right)^{2}$.
Exercise 6.97: $\left(1-\frac{c}{n}\right)^{n}=\frac{\left(1-\frac{c^{2}}{n}\right)^{n}}{\left(1+\frac{c}{n}\right)^{n}}$.
Exercise 7.16: Take $c=\frac{b}{a}$ in lemma 7.13.
Exercise 7.18: $A_{0}^{a} f=A_{0}^{\frac{1}{n}} f+A_{\frac{1}{n}}^{a} f$. Show that $A_{0}^{\frac{1}{n}} f$ is small when n is large.
Exercise 8.14: $e) \frac{x+1}{x}=1+\frac{1}{x}$. Not all of these integrals exist.
Exercise 8.16: Show that $\sum(f, P, S) \leq \sum(g, P, S)$ for every partition P of $[a, b]$ and every sample S for P.

Exercise 8.28: g is the sum of an integrable function and a spike function.
Exercise 8.32: f is not piecewise monotonic. It is easy to see that f is integrable on $[1,2]$. If you can show it is integrable on $[0,1]$ then you are essentially done.

Exercise 8.34: b) $(b-a)^{3} / 6$.
Exercise 8.41: For any partition P of [0.1] you can find a sample S such that $\sum(R, P, S)=0$.

Exercise 8.46: In equation 8.44, replace r by $\frac{1}{R}$, and replace a and b by $R A$ and $R B$.

Exercise 8.48: $\alpha\left(E_{a b}\right)=\pi a b$.
Exercise 8.50: If $a=1 / 4$ then both areas are approximately 3.1416
Exercise 8.55: area $=4 \pi$.
Exercise 8.57: The areas are $5 / 12$ and 1 .
Exercise 8.58: The area is $\frac{37}{12}$. Some fractions with large numerators may appear along the way.

Exercise 9.20: The last two formulas are obtained from the second by replacing t by $t / 2$.

Exercise 9.29: I used exercise 9.28 with $x=\frac{\pi}{6}$ to find $\cos \left(\frac{\pi}{6}\right)$. You can also give a more geometric proof.

Exercise 9.44: You will need to use (9.24).
Exercise 9.48: $\alpha\left(S_{0}^{\pi}(\sin)\right)=2$.
Exercise 9.49: area $=\sqrt{2}$.
Exercise 9.69: $\int_{0}^{\pi / 2} \sin (x) d x=1 ; \int_{0}^{\pi / 2} \sin ^{2}(x) d x=\pi / 4 ; \int_{0}^{\pi / 2} \sin ^{4}(x) d x=3 \pi / 16$.
Exercise 10.25: $f^{\prime}(a)=-\frac{1}{a^{2}}$.
Exercise 10.26: See example 10.9 and 9.26 .
Exercise 10.27: $f^{\prime}(a)=\frac{1}{(a+1)^{2}}$.
Exercise 10.28: $y=2 x-4 ; y=-6 x-4$.
Exercise 11.6: I used formula 9.25
Exercise 11.15: $\frac{d}{d t}(|-100 t|)=\frac{100 t}{|t|}$.
Exercise 11.21: You can use the definition of derivative, or you can use the product rule and the reciprocal rule.

Exercise 11.24: $f^{\prime}(x)=\ln (x), g^{\prime}(x)=\frac{a d-b c}{(c x+d)^{2}}, k^{\prime}(x)=2(2 x+3)\left(x^{2}+3 x+11\right)$
Exercise 11.29: $(g \circ(g \circ g))(x)=((g \circ g) \circ g)(x)=x$ for $x \in \mathbf{R} \backslash 0,1$. If you said $(f \circ f)(x)=x$, calculate both sides when $x=-1$.

Exercise 11.40: Use the definition of derivative. $h^{\prime}(2)=0$.
Exercise 11.43: $g^{\prime}(x)=-\tan (x), h^{\prime}(x)=\tan (x), k^{\prime}(x)=\sec (x), l^{\prime}(x)=-\csc (x)$, $m^{\prime}(x)=9 x^{2} \ln (5 x), n^{\prime}(x)=\frac{\sqrt{x^{2}+1}}{x}$ (It requires a lot of calculation to simplify $\left.n^{\prime}\right), p^{\prime}(x)=\frac{x^{2}}{x+4}, q^{\prime}(x)=\sin (\ln (|6 x|))$.

Exercise 12.14: d) Such a function k does exist.
Exercise 12.15: a) Use extreme value property.
Exercise 12.27: Proof is like given proof of corollary 12.26.
Exercise 12.31: Apply corollary 12.26 to $F-G$.

Exercise 12.35: Yes.
Exercise 12.36: You can apply the chain rule to the identity $f(-x)=f(x)$.
Exercise 13.14: The function to minimize is $f(x)=\operatorname{distance}\left(\left(0, \frac{9}{2}\right),\left(x, x^{2}\right)\right)$.
Exercise 13.15: You may get a complicated equation of the form $\sqrt{f(x)}=\sqrt{g(x)}$ to solve. Square both sides and the equation should simplify.

Exercise 14.5: Apply the intermediate value property to $f-f p$.
Exercise 14.9: One of the zeros is in [1, 2].
Exercise 14.10: I showed that if $\operatorname{temp}(A)<\operatorname{temp}(B)<\operatorname{temp}(D)$, then there is a point Q in $D C \cup C A$ such that $\operatorname{temp}(Q)=\operatorname{temp}(B)$.

Exercise 14.11: if $\operatorname{temp}(A)<\operatorname{temp}(B)<\operatorname{temp}(C)<\operatorname{temp}(D)$, find two points different from B that have the same temperature as B.

Exercise 14.17: You may want to define some of these functions using more than one formula.

Exercise 14.41: Use the extreme value property to get A and B.
Exercise 14.54: $f^{\prime}(x)=2 \sqrt{a^{2}-x^{2}} ; h^{\prime}(x)=\arccos (a x) ; n^{\prime}(x)=\left(a^{2}+b^{2}\right) e^{a x} \sin (b x)$; $p^{\prime}(x)=a^{3} x^{2} e^{a x}$.

Exercise 14.55: It is not true that $l(x)=x$ for all x. Note that the image of l is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Exercise 15.5: $g^{(k)}(t)=t f^{(k)}(t)+k f^{(k-1)}(t)$.
Exercise 15.8: Use the antiderivative theorem twice.
Exercise 15.9: $(f g)^{(3)}=f g^{(3)}+3 f^{(1)} g^{(2)}+3 f^{(2)} g^{(1)}+f^{(3)} g$.
Exercise 15.13: You will need to use a few trigonometric identities, including the reflection law (9.18).

Exercise 15.22: $h(t)=h_{0}+v_{0} t-\frac{1}{2} g t^{2}$.
Exercise 15.29: Use theorem 15.27 and corollary 12.26

Exercise 16.2: You probably will not be able to find a "single formula" for this. My function has a local maximum at $\frac{1}{2 n+1}$ for all $n \in \mathbf{Z}^{+}$.

Exercise 16.8: The result is known if $p<q$. To get the result when $q<p$, apply 16.6 to f on $[q, p]$.

Exercise 16.13: Not all of these integrals make sense. $K^{\prime}(x)=1$ for all $x \in \mathbf{R} . L^{\prime}(x)=1$ for $x \in \mathbf{R}^{+} . L^{\prime}(x)=-1$ for $x \in \mathbf{R}^{-} . L(0)$ is not defined.

Exercise 17.16: b) $-\ln \left(\left|\csc \left(e^{x}\right)+\cot \left(e^{x}\right)\right|\right)$; f) $\frac{1}{2} \ln (|\sin (2 x)|)$. i) Cf example 9.68i.j) You did this in exercise 9.69.

Exercise 17.31: b) $\frac{1}{2} e^{x}(\sin (x)-\cos (x))$. When you do the second integration by parts, be careful not to undo the first. c) $x \arctan (x)-\frac{1}{2} \ln \left(1+x^{2}\right)$. Let $g^{\prime}(x)=1$. d) and e) can be done easily without using integration by parts. f) If $r=-1$ the answer is $\frac{1}{2}(\ln (|x|))^{2}$.
Exercise 17.42: c) Let $u=\sqrt{x}$. You will need an integration by parts. d) Let $u=\ln (3 x)$. e) Remember the definition of 2^{x}.

Exercise 17.49: a) $\frac{1}{2} a^{2} \arcsin \left(\frac{x}{a}\right)+\frac{1}{2} x \sqrt{a^{2}-x^{2}}$. If you forget how to find $\int \cos ^{2}(\theta) d \theta$, review example 9.53. Also recall that $\sin (2 x)=2 \sin (x) \cos (x)$. b) $\ln \left(\frac{x+\sqrt{a^{2}+x^{2}}}{a}\right)$. c) and d) do not require a trigonometric substitution.

Exercise 17.53: a) $\frac{5}{4}$. b) $\frac{\pi}{6}$. c) $\frac{4}{15}$.
Exercise 17.54: $\frac{2 \pi}{3}+\sqrt{3}$.
Exercise 17.64: (g) $\ln \left(\sqrt{x^{2}+2 x+2}+x+1\right)$. First complete the square, and then reduce the problem to $\int \frac{1}{\sqrt{u^{2}+1}} d u$.

