
Chapter 17

Antidifferentiation Techniques

17.1 The Antidifferentiation Problem

17.1 Definition (
∫

f or
∫

f(x)dx.) I am going to use the notation
∫

f
or

∫
f(x)dx to denote some arbitrary antiderivative for f on an interval that

often will not be specified. This is the same notation that I used previously
to denote an indefinite integral for f . Although the fundamental theorem of
the calculus shows that for nice functions the concepts of “antiderivative” and
“indefinite integral” are essentially the same, for arbitrary functions the two
concepts do not coincide. For example, let

f(x) =
{

1 if x > 0
−1 if x ≤ 0.

Then f has an indefinite integral F where

F (x) =
{ ∫ x

0 1 dx = x if x > 0.
− ∫ x

0 1 dx = −x if x ≤ 0.

Thus F (x) = |x|. Then F is not an antiderivative for f , since we know that
F is not differentiable at 0.

I will always try to make it clear whether
∫

f represents an antiderivative
or an indefinite integral in cases where it makes a difference.

The problem of calculating derivatives is straightforward. By using known
formulas and rules, you can easily find the derivative of almost any function
you can write down. The problem of calculating antiderivatives is much more
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complicated. In fact, none of the five functions

ex2

, ln
(

ln(x)
)
,

1

ln(x)
,

sin(x)

x
,

(1− x)
3
5

x
12
5

(17.2)

have antiderivatives that can be expressed in terms of functions we have stud-
ied. (To find a proof of this assertion, see [40, page 37 ff] and [41].) The
first two functions in this list are compositions of functions that have simple
antiderivatives, the third function is the reciprocal of a function with a simple
antiderivative, and each of the last two functions is a product of two func-
tions with simple antiderivatives. (An antiderivative for ln will be calculated
in (17.25).) It follows that there is no chain rule or reciprocal rule or prod-
uct rule for calculating antiderivatives. We will see, however, that the chain
rule and the product rule for differentiation do give rise to antidifferentiation
formulas.

The five functions

e
√

x, sin
(

ln(x)
)
,

1

sin x
,

ln(x)

x
,

(1− x)
2
5

x
12
5

, (17.3)

which look somewhat similar to the functions in (17.2), turn out to have simple
antiderivatives, as you will see in (17.42c), (17.22), (17.7), (17.31f) and (17.41).
It is often not easy to tell the difference between a function that has a simple
antiderivative and a function that does not.

Many simple functions that arise in applied problems do not have simple
antiderivatives. The exercises in this chapter have been carefully designed to
be non-typical functions whose antiderivatives can be found.

The Maple instructions for finding antiderivatives and integrals are

int(f(x) , x); =
∫

f(x)dx,

and

int(f(x) , x = a..b); =
∫ b

a
f(x)dx.

I gave the five functions in (17.2) to Maple to antidifferentiate.



330 CHAPTER 17. ANTIDIFFERENTIATION TECHNIQUES

The results were:
> int( exp(x^2),x);

− 1

2
I
√

π erf( I x )

> int( ln(ln(x)),x);

x ln( ln( x ) ) + Ei( 1,−ln( x ) )

> int(1/ln(x),x);

−Ei( 1,−ln( x ) )

> int(sin(x)/x,x);

Si( x )

> int( ((1-x)^(3/5))/ (x^(12/5)),x);

− 5

14

2− 5 x + 3 x2

x 5
√

(−1 + x)2 x2
−

∫
−3/14

1
5
√

(−1 + x)2 x2
dx

In the first four cases, an answer has been given involving names of func-
tions we have not seen before, (and which we will not see again in this course).
The definitions of these functions are:

Si(x) =
∫ x

0

sin(t)

t
dt, (17.4)

Ei(n, x) = lim
N→∞

∫ N

1

e−xt

tn
dt, (n ∈ Z+) (17.5)

erf(x) =
2√
π

∫ x

0
e−t2 dt. (17.6)

In equation (17.4), we assume that
sin(t)

t
= 1 when t = 0. The function Si is

called the sine integral. In equation (17.5), Ei(n, x) makes sense only when
x is positive. The definition of Ei(n, x) for x < 0 involves ideas we have not
discussed. The function Ei is called the exponential integral.

The function erf is called the error function. The answer given by Maple
for

∫
ex2

dx involves the symbol I. This is Maple’s notation for
√−1. The

definition of erf(Ix) makes no sense in terms of concepts we have studied.
However you can use Maple to calculate integrals even if you do not know

what the symbols mean. The following instructions find
∫ 1

0
exp(x2)dx:
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> int( exp(x^2),x= 0..1);

− 1

2
I erf( I )

√
π

> evalf(%);

1.462651746

17.2 Basic Formulas

Every differentiation formula gives rise to an antidifferentiation formula. We
review here a list of formulas that you should know. In each case you should
verify the formula by differentiating the right side. You should know these
formulas backward and forward.

∫
(f(x))rf ′(x)dx =

(f(x))r+1

r + 1
(r 6= −1).

∫ f ′(x)

f(x)
dx = ln(|f(x)|).

∫
cos(f(x))f ′(x)dx = sin(f(x)).

∫
sin(f(x))f ′(x)dx = − cos(f(x)).

∫
ef(x)f ′(x)dx = ef(x).

∫
sec2(f(x))f ′(x)dx = tan(f(x)).

∫
csc2(f(x))f ′(x)dx = − cot(f(x)).

∫
sec(f(x)) tan(f(x))f ′(x)dx = sec(f(x)).

∫
csc(f(x)) cot(f(x))f ′(x)dx = − csc(f(x)).

∫ f ′(x)

1 + f 2(x)
dx = arctan(f(x)).

∫ f ′(x)√
1− f 2(x)

dx = arcsin(f(x)).

17.7 Exercise. Verify that

d

dx

(
ln(| sec(f(x)) + tan(f(x))|)

)
= sec(f(x))f ′(x)
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and
d

dx

(
ln(| csc(f(x)) + cot(f(x))|)

)
= − csc(f(x))f ′(x).

It follows from the previous exercise that
∫

sec(f(x))f ′(x)dx = ln(| sec(f(x)) + tan(f(x))|)

and ∫
csc(f(x))f ′(x)dx = − ln(| csc(f(x)) + cot(f(x))|).

You should add these two formulas to the list of antiderivatives to be memo-
rized.

17.8 Theorem (Sum rule for antiderivatives) If f and g are functions
that have antiderivatives on some interval [a, b], and if c ∈ R then f +g, f −g
and cf have antiderivatives on [a, b] and

∫
(f ± g) =

∫
f ±

∫
g,

and ∫
cf = c

∫
f. (17.9)

Proof: The meaning of this statement is that if F is an antiderivative for f
and G is an antiderivative for G, then F ±G is an antiderivative for f±g, and
cF is an antiderivative for cf . The warning about the ambiguous notation for
indefinite integrals given on page 214 applies also to antiderivatives.

Let F,G be antiderivatives for f and g respectively on [a, b]. Then F and
G are continuous on [a, b], and

F ′ = f and G′ = g

on (a, b). Hence F ±G are continuous on [a, b], and

(F ±G)′ = F ′ ±G′ = f ± g

on (a, b), and hence

∫
(f ± g) = F ±G =

∫
f ±

∫
g.
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Also cF is continuous on [a, b], and

(cF )′ = cF ′ = cf

on (a, b), so that ∫
cf = cF = c

∫
f. |||

17.10 Example. We will calculate
∫

x2(x3 + 1)3dx.

I will try to bring this integral into the form
∫

(f(x))rf ′(x)dx.

It appears reasonable to take f(x) = (x3 + 1), and then f ′(x) = 3x2. The
3x2 doesn’t quite appear in the integral, but I can get it where I need it by
multiplying by a constant, and using (17.9):

∫
x2(x3 + 1)3dx =

1

3

∫
(3x2)(x3 + 1)3dx =

1

3

(x3 + 1)4

4
=

(x3 + 1)4

12
.

17.11 Example. We will calculate
∫

x(x3 + 1)3dx.

This problem is more complicated than the last one. Here I still want to take
f(x) = (x3 + 1), but I cannot get the “f ′(x)” that I need. I will multiply out
(x3 + 1)3

∫
x(x3 + 1)3dx =

∫
x((x3)3 + 3(x3)2 + 3(x3) + 1)dx

=
∫

(x10 + 3x7 + 3x4 + x)dx

=
x11

11
+ 3

x8

8
+ 3

x5

5
+

x2

2
.

17.12 Example. We will calculate
∫

tet2dt.

∫
tet2dt =

1

2

∫
(2t)et2dt.

Since
d

dt
(t2) = 2t we get

∫
tet2dt =

1

2
et2 .
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17.13 Example. We will consider
∫

et2dt.

Although this problem looks similar to the one we just did, it can be shown
that no function built up from the functions we have studied by algebraic
operations is an antiderivative for exp(t2). So we will not find the desired
antiderivative. (But by the fundamental theorem of the calculus we know that
et2 has an antiderivative.)

17.14 Example. We will calculate
∫

tan.

∫
tan =

∫ sin

cos
= −

∫ cos′

cos
= − ln(| cos |).

17.15 Example. We will calculate
∫ a

0

1

a2 + x2
dx.

The integrand
1

a2 + x2
looks enough like

1

1 + x2
that I will try to get an arctan

from this integral.

∫ 1

a2 + x2
=

1

a2

∫ 1

1 +
(

x
a

)2 dx

Now
d

dx

(
x

a

)
=

1

a
, so

∫ 1

a2 + x2
=

1

a

∫ 1

1 +
(

x
a

)2

d

dx

(
x

a

)
dx =

1

a
arctan

(
x

a

)
.

Thus we have found an antiderivative for
1

a2 + x2
. Hence

∫ a

0

1

a2 + x2
dx =

1

a
arctan(

x

a
)
∣∣∣∣
a

0
=

1

a
arctan(1) =

π

4a
.

17.16 Exercise. Find the following antiderivatives:

a)
∫

ex sin(ex)dx.

b)
∫ ex

sin(ex)
dx.
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c)
∫

(3w4 + w)2(12w3 + 1)dw.

d)
∫

cos(4x)dx.

e)
∫ 2x

1 + x2
dx.

f)
∫

cot(2x)dx.

g)
∫ 2

1 + w2
dw.

h)
∫ 2w

1 + w2
dw.

i)
∫

sin3(x)dx.

j)
∫

sin4(x)dx.

17.3 Integration by Parts

17.17 Theorem (Integration by parts.) Let f, g be functions that are
continuous on an interval [a, b] and differentiable on (a, b). If f ′g has an
antiderivative on [a, b], then g′f also has an antiderivative on [a, b] and

∫
g′f = fg −

∫
f ′g. (17.18)

We call formula (17.18) the formula for integration by parts.

Proof: This theorem is just a restatement of the product rule for differ-
entiation. If f and g are differentiable on (a, b) then the product rule says
that

(fg)′ = f ′g + g′f

so that
g′f = (fg)′ − f ′g
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on (a, b). If
∫

f ′g is an antiderivative for f ′g on [a, b], then fg − ∫
f ′g is

continuous on [a, b], and

(fg −
∫

f ′g)′ = (fg)′ − f ′g = g′f

on (a, b). We have shown that fg− ∫
f ′g is an antiderivative for g′f on [a, b]. |||

17.19 Example. We will calculate
∫ π

0
x sin(3x)dx. We begin by searching

for an antiderivative for x sin(3x). Let

f(x) = x,

g′(x) = sin(3x),

f ′(x) = 1,

g(x) = −1

3
cos(3x).

Then by the formula for integration by parts
∫

x sin(3x)dx =
∫

f(x)g′(x)dx

= f(x)g(x)−
∫

f ′(x)g(x)dx

= −x

3
cos(3x) +

1

3

∫
cos(3x)dx

= −x

3
cos(3x) +

1

9
sin(3x).

(17.20)

Hence
∫ π

0
x sin(3x)dx = (−x

3
cos(3x) +

1

9
sin(3x))

∣∣∣∣
π

0

= −π

3
cos(3π) =

π

3
.

Suppose I had tried to find
∫

x sin(3x) in the following way: Let

f(x) = sin(3x),

g′(x) = x,

f ′(x) = 3 cos(3x),

g(x) =
1

2
x2.



17.3. INTEGRATION BY PARTS 337

Then by the formula for integration by parts
∫

x sin(3x)dx =
∫

f(x)g′(x)dx

= f(x)g(x)−
∫

f ′(x)g(x)dx

=
1

2
x2 sin(3x)− 3

2

∫
x2 cos(3x)dx. (17.21)

In this case the antiderivative
∫

x2 cos(3x)dx looks more complicated than the
one I started out with. When you use integration by parts, it is not always
clear what you should take for f and for g′. If you find things are starting
to look more complicated rather than less complicated, you might try another
choice for f and g′.

Integration by parts is used to evaluate antiderivatives of the forms∫
xn sin(ax)dx,

∫
xn cos(ax)dx, and

∫
xnexdx when n is a positive integer.

These can be reduced to antiderivatives of the forms
∫

xn−1 sin(ax)dx,
∫

xn−1 cos(ax)dx, and
∫

xn−1exdx, so by applying the process n times we get

the power of x down to x0, which gives us antiderivatives we can easily find.

17.22 Example. We will calculate
∫

sin(ln(x)).
Let

f(x) = sin(ln(x)),

g′(x) = 1,

g(x) = x,

f ′(x) =
cos(ln(x))

x
.

Then
∫

sin(ln(x))dx =
∫

f(x)g′(x)dx = f(x)g(x)−
∫

f ′(x)g(x)dx

= x sin(ln(x))−
∫

cos(ln(x))dx (17.23)

We will now use integration by parts to find an antiderivative for cos(ln(x)).
Let

F (x) = cos(ln(x)),
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G′(x) = 1,

G(x) = x,

F ′(x) = −sin(ln(x))

x
.

Then
∫

cos(ln(x))dx =
∫

F (x)G′(x) = F (x)G(x)−
∫

F ′(x)G(x)dx

= x cos(ln(x)) +
∫

sin(ln(x))dx (17.24)

From equations (17.23) and (17.24) we see that

∫
sin(ln(x))dx = x sin(ln(x))−

(
x cos(ln(x)) +

∫
sin(ln(x))

)
.

Thus
2

∫
sin(ln(x))dx = x sin(ln(x))− x cos(ln(x)),

and ∫
sin(ln(x))dx =

x

2
(sin(ln(x))− cos(ln(x))).

17.25 Example. We will calculate
∫

ln(t)dt. Let

f(t) = ln(t),

g′(t) = 1,

g(t) = t,

f ′(t) =
1

t
.

Then
∫

ln(t)dt =
∫

f(t)g′(t)dt = f(t)g(t)−
∫

f ′(t)g(t)dt

= t ln(t)−
∫

1dt

= t ln(t)− t.

17.26 Theorem (Antiderivative of inverse functions.) Let I and J be
intervals in R, and let f : I → J be a continuous function such that f ′(x) is
defined and non-zero for all x in the interior of I. Suppose that g: J → I is
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the inverse function for f , and that F is an antiderivative for f . Then an
antiderivative for g on J is given by

∫
g(x) dx = xg(x)− (F ◦ g)(x). (17.27)

Proof: Let h(x) = x. Then h′(x) = 1, and
∫

g(x) dx =
∫

g(x)h′(x)dx = g(x)h(x)−
∫

g′(x)h(x)dx

= xg(x)−
∫

xg′(x)dx (17.28)

Now F ′ = f and f ◦ g(x) = x for all x in J , so

(F ◦ g)′(x) = F ′(g(x)
)
· g′(x) = f

(
g(x)

)
· g′(x) = xg′(x)

and it follows from (17.28) that
∫

g(x) dx = xg(x)−
∫

(F ◦ g)′(x) dx

= xg(x)− (F ◦ g)(x). |||
Remark: It follows from the proof of the previous theorem that if you know
an antiderivative for a function f , then you can find an antiderivative for the
inverse function g by integration by parts. This is what you should remember
about the theorem. The formula (17.27) is not very memorable.

17.29 Example. In the previous theorem, if we take

f(x) = ex, F (x) = ex, g(x) = ln(x),

then we get ∫
ln(x) dx = x ln(x)− eln(x) = x ln(x)− x.

This agrees with the result obtained in example 17.25.

17.30 Exercise. What is wrong with the following argument? Let

f(x) =
1

x
,

g′(x) = 1,

f ′(x) = − 1

x2
,

g(x) = x.
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Then
∫ 1

x
dx =

∫
f(x)g′(x)dx = f(x)g(x)−

∫
f ′(x)g(x)dx

= 1 +
∫ 1

x
dx.

If we subtract
∫ 1

x
dx from both sides we obtain

0 = 1.

17.31 Exercise. Calculate the following antiderivatives:

a)
∫

xexdx.

b)
∫

ex sin(x)dx. (Integrate by parts more than once.)

c)
∫

arctan(u)du.

d)
∫ x√

4− x2
dx.

e)
∫

x
√

4− x2dx.

f)
∫

xr ln(|x|)dx, where r ∈ R. Have you considered the case where

r = −1?

g)
∫

x2 cos(2x)dx.

17.4 Integration by Substitution

We will now use the chain rule to find some antiderivatives. Let g be a real val-
ued function that is continuous on some interval J and differentiable on the in-
terior of J , and let f be a function such that f has an antiderivative F on some
interval K. We will suppose that g(J) ⊂ K and g

(
interior(J)

)
⊂ interior(K).

It then follows that F ◦ g is continuous on J and differentiable on interior(J),
and

(F ◦ g)′(t) = (F ′ ◦ g)(t)g′(t) = (f ◦ g)(t)g′(t) (17.32)
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for all t in the interior of J ; i.e., F ◦ g is an antiderivative for (f ◦ g)g′ on J .
Thus

∫
f

(
g(t)

)
g′(t)dt = F

(
g(t)

)
where F (u) =

∫
f(u)du. (17.33)

There is a standard ritual for using (17.33) to find
∫

f
(
g(t)

)
g′(t)dt when

an antiderivative F can be found for f . We write:

Let u = g(t). Then du = g′(t)dt (or du =
du

dt
dt), so

∫
f

(
g(t)

)
g′(t)dt =

∫
f(u)du = F (u) = F

(
g(t)

)
. (17.34)

In the first equality of (17.34) we replace g(t) by u and g′(t)dt by du, and in
the last step we replace u by g(t). Since we have never assigned any meaning
to “du” or “dt”, we should think of (17.34) just as a mnemonic device for
remembering (17.33).

17.35 Example. Find
∫ sin(

√
x)√

x
dx.

Let u =
√

x. Then du =
1

2
√

x
dx, so

∫ sin(
√

x)√
x

dx = 2
∫

sin(
√

x)
1

2
√

x
dx

= 2
∫

sin(u)du = −2 cos(u)

= −2 cos(
√

x). |||

Suppose we want to find
∫

sin(
√

x)dx. If we had a
√

x in the denominator, this
would be a simple problem. (In fact we just considered this problem in the
previous example.) We will now discuss a method of introducing the missing√

x.
Suppose g is a function on an interval J such that g′(t) is never zero on

the interior of J , and suppose that h is an inverse function for g. Then

(
h

(
g(x)

)
= x

)
=⇒

(
h′

(
g(x)

)
· g′(x) = 1

)
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for all x in the interior of J , so

∫
f

(
g(x)

)
dx =

∫
f

(
g(x)

)
· h′

(
g(x)

)
· g′(x)dx.

We now apply the ritual (17.34): Let u = g(x). Then du = g′(x)dx, so

∫
f

(
g(x)

)
dx =

∫
f

(
g(x)

)
h′

(
g(x)

)
· g′(x)dx

=
∫

f(u)h′(u)du.

If we can find an antiderivative H for fh′, then

∫
f(u)h′(u)du = H(u) = H

(
g(x)

)
.

We have shown that if h is an inverse function for g, then

∫
f

(
g(x)

)
dx = H

(
g(x)

)
where H(u) =

∫
f(u)h′(u)du (17.36)

There is a ritual associated with this result also. To find
∫

f
(
g(x)

)
dx:

Let u = g(x). Then x = h(u) so dx = h′(u)du.
Hence

∫
f

(
g(x)

)
dx =

∫
f(u)h′(u)du = H(u) = H

(
g(x)

)
. (17.37)

17.38 Example. To find
∫

sin(
√

x)dx.
Let u =

√
x. Then x = u2 so dx = 2u du.

Thus ∫
sin(

√
x)dx =

∫
sin(u) · 2u du = 2

∫
u sin(u)du.

We can now use integration by parts to find
∫

u sin(u)du. Let

f(u) = u, g′(u) = sin(u),

f ′(u) = 1, g(u) = − cos(u).
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Then
∫

u sin(u)du =
∫

f(u)g′(u)du

= f(u)g(u)−
∫

f ′(u)g(u)du

= −u cos(u) +
∫

cos(u)du

= −u cos(u) + sin(u).

Hence
∫

sin(
√

x)dx = 2
∫

u sin u du

= −2u cos(u) + 2 sin(u)

= −2
√

x cos(
√

x) + 2 sin(
√

x).

17.39 Example. To find
∫ 1

ex + e−x
dx.

Let u = ex. Then x = ln(u) so dx =
1

u
du.

∫ 1

ex + e−x
dx =

∫ 1

(u + 1
u
)
· 1

u
du =

∫ 1

u2 + 1
du

= arctan(u) = arctan(ex).

17.40 Example. To find
∫

t
√

t + 1 dt.
Let u = t + 1. Then t = u− 1 so dt = du.
Hence

∫
t
√

t + 1 dt =
∫

(u− 1)
√

u du =
∫

u3/2 − u1/2du

=
2

5
u5/2 − 2

3
u3/2 =

2

5
(t + 1)5/2 − 2

3
(t + 1)3/2.
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17.41 Example. To find
∫ (1− x)

2
5

x
12
5

dx.

∫ (1− x)
2
5

x
12
5

dx =
∫ (

1− x

x

) 2
5 · 1

x2
dx.

Let u =
1− x

x
=

1

x
− 1. Then du = − 1

x2
dx, and

∫ (1− x)
2
5

x
12
5

dx = −
∫

u
2
5 du = −5

7
u

7
5 = −5

7

(
1− x

x

) 7
5

.

Thus ∫ (1− x)
2
5

x
12
5

dx = −5

7

(
1− x

x

) 7
5

.

17.42 Exercise. Find the following antiderivatives:

a)
∫

x2 sin(x3)dx.

b)
∫ ex

1 + ex
dx.

c)
∫

e
√

xdx.

d)
∫ ln(3x)

x
dx.

e)
∫

2x dx.

f)
∫ e2x + e3x

e4x
dx.

g)
∫

x(1 + 3
√

x)dx.



17.5. TRIGONOMETRIC SUBSTITUTION 345

17.5 Trigonometric Substitution

Integrals of the form
∫

F (
√

a2 + x2)dx and
∫

F (
√

a2 − x2)dx often arise in

applications. There is a special trick for dealing with such integrals. Since

x = a tan(arctan(
x

a
)) for all x ∈ R,

we can write

∫
F (
√

a2 + x2)dx =
∫

F (

√
a2 +

(
a tan(arctan(

x

a
))

)2
)dx.

If we now make the substitution

u = arctan(
x

a
) or x = a tan(u),

(
u ∈ (−π

2
,
π

2
)
)

then we find dx = a sec2(u)du, or

∫
F (
√

a2 + x2)dx =
∫

F (

√
a2 +

(
a tan(u)

)2
)a sec2 u du.

Now
a2 +

(
a tan(u)

)2
= a2

(
1 + tan2(u)

)
= a2 sec2(u)

so √
a2 +

(
a tan(u)

)2
= a sec(u).

(Since u ∈
(
− π

2
,
π

2

)
we have sec(u) > 0 and the square root is positive.) Thus

∫
F (
√

a2 + x2)dx = a
∫

F
(
a sec(u)

)
· sec2(u)du.

Often this last antiderivative can be found. If

a
∫

F
(
a sec(u)

)
· sec2(u)du = H(u),

then by the ritual (17.37)

∫
F (
√

a2 + x2)dx = a
∫

F
(
a sec(u)

)
· sec2(u)du = H(u) = H(arctan(

x

a
)).
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The ritual to apply when using this method for finding
∫

F (
√

a2 + x2)dx

is:
Let x = a tan(u). Then dx = a sec2(u)du, and

√
a2 + x2 =

√
a2 + a2 tan2(u) =

√
a2 sec2(u) = a sec(u),

so
∫

F (
√

a2 + x2)dx = a
∫

F
(
a sec(u)

)
sec2(u)du = H(u) = H(arctan(

x

a
)).

There is a similar ritual for integrals of the form
∫

F (
√

a2 − x2)dx (Here we

will just describe the ritual).
Let x = a sin(u). Then dx = a cos(u)du and

√
a2 − x2 =

√
a2 − a2 sin(u) =

√
a2 cos2(u) = a cos(u) (17.43)

so
∫

F (
√

a2 − x2)dx = a
∫

F
(
a cos(u)

)
· cos(u)du = H(u) = H(arcsin(

x

a
)).

Observe that in equation (17.43) we are assuming that u = arcsin (
x

a
), so

u ∈ (−π

2
,
π

2
), so cos(u) ≥ 0, and the sign of the square root is correct.

17.44 Example. Find
∫ √

4 + x2dx.
Let x = 2 tan θ. Then dx = 2 sec2 θ dθ, and

√
4 + x2 =

√
4(1 + tan2 θ) = 2

√
sec2(θ) = 2 sec(θ). (17.45)

Thus ∫ √
4 + x2 dx = 22

∫
sec θ · sec2 θ dθ = 4

∫
sec3(θ) dθ.

To find
∫

sec3(θ)dθ, I will integrate by parts. Let

f(θ) = sec(θ), g′(θ) = sec2(θ),
f ′(θ) = sec(θ) tan(θ), g(θ) = tan(θ).
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Hence,

∫
sec3(θ)dθ =

∫
f(θ)g′(θ)dθ

= f(θ)g(θ)−
∫

f ′(θ)g(θ)dθ

= sec(θ) tan(θ)−
∫

sec(θ) tan2(θ)dθ

= sec(θ) tan(θ)−
∫

sec(θ)(sec2(θ)− 1)dθ

= sec(θ) tan(θ)−
∫

sec3(θ)dθ +
∫

sec(θ)dθ.

Hence

2
∫

sec3(θ)dθ = sec(θ) tan(θ) +
∫

sec(θ)dθ

= sec(θ) tan(θ) + ln(| sec(θ) + tan(θ)|);

i.e.,

∫
sec3(θ)dθ =

1

2

(
sec(θ) tan(θ) + ln

(
| sec(θ) + tan(θ)|

))
. (17.46)

Hence
∫ √

4 + x2dx = 4
∫

sec3(θ)dθ

= 2

(
sec(θ) tan(θ) + ln

(
| sec(θ) + tan(θ)|

))
.

By (17.45) we have tan(θ) =
x

2
and sec(θ) =

1

2

√
4 + x2. Thus

∫ √
4 + x2dx = 2

(
1

2

√
4 + x2 · x

2
+ ln

(∣∣∣
√

4 + x2

2
+

x

2

∣∣∣
))

=
x
√

4 + x2

2
+ 2 ln

(∣∣∣
√

4 + x2 + x

2

∣∣∣
)
.
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17.47 Example. In the process of working out the last example we found∫
sec3(θ)dθ using integration by parts. Here is a different tricky way of finding

the same integral [32].

∫
sec3(θ)dθ =

1

2

∫
(sec3(θ) + sec3(θ))dθ

=
1

2

∫
(sec(θ)(1 + tan2(θ)) + sec3(θ))dθ

=
1

2

∫
(sec(θ) +

(
(sec(θ) tan(θ)) · tan(θ) + sec(θ) · sec2(θ)

)
)dθ

=
1

2

∫
(sec(θ) +

d

dθ
(sec(θ) tan(θ)))dθ

=
1

2
(ln(| sec(θ) + tan(θ)|) + sec(θ) tan(θ)).

17.48 Example. Find
∫ 1√

a2 − x2
dx.

Let x = a sin(θ). Then dx = a cos(θ)dθ and

√
a2 − x2 =

√
a2 − a2 sin2 θ = a

√
cos2 θ = a cos θ.

Thus

∫ 1√
a2 − x2

dx =
∫ a cos(θ)

a cos(θ)
dθ =

∫
1 dθ

= θ = arcsin(
x

a
).

17.49 Exercise. Find the following antiderivatives:

a)
∫ √

a2 − x2 dx

b)
∫ 1√

a2 + x2
dx

c)
∫ x√

a2 − x2
dx

d)
∫

x
√

a2 + x2 dx
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17.50 Example (Area of a circular sector) Let a be a positive number,
and let θ0 be a number in [0, π

2
). Let o = (0, 0), and let p = (a cos(θ0), a sin(θ0).

Let T (a, θ0) be the circular sector bounded by the positive x-axis, the segment
[op], and the circle {x2 + y2 = a2}.

(a, 0)

p = (a cos(θ0), a sin(θ0))

o

T (a, θ0) is shaded region

The equation for [op] is

y =
a sin(θ0)

a cos(θ0)
x = x tan(θ0),

and the equation for the upper semicircle is

y =
√

a2 − x2.

Hence
area(T (a, θ0)) = Aa

0(f),

where

f(x) =
{

x tan(θ0) if 0 ≤ x ≤ a cos(θ0),√
a2 − x2 if a cos(θ0) ≤ x ≤ a.

i.e.

area(T (a, θ0)) =
∫ a cos(θ0)

0
x tan(θ0)dx +

∫ a

a cos(θ0)

√
a2 − x2 dx.

In exercise 17.49.a you showed that

∫ √
a2 − x2 =

1

2
a2 arcsin

(
x

a

)
+

1

2
x
√

a2 − x2,
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so

area(T (a, θ0)) = tan(θ0)
x2

2

∣∣∣∣∣
a cos(θ0)

0

+
(

1

2
a2 arcsin(

x

a
) +

1

2
x
√

a2 − x2

)∣∣∣∣
a

a cos(θ0)

=
1

2
tan(θ0)a

2 cos2(θ0) +
1

2
a2 arcsin(1)

−1

2
a2 arcsin(cos(θ0))− 1

2
a cos(θ0)

√
a2 − a2 cos2(θ0)

=
a2

2
sin(θ0) cos(θ0) +

πa2

4

−a2

2
arcsin(sin(

π

2
− θ0))− a2

2
cos(θ0)

√
1− cos2(θ0)

=
a2

2
sin(θ0) cos(θ0) +

πa2

4
− a2

2
(
π

2
− θ0)− a2

2
sin(θ0) cos(θ0)

=
1

2
a2θ0.

By using symmetry arguments, you can show that this formula actually holds
for 0 ≤ θ0 ≤ 2π.

17.6 Substitution in Integrals

Let f be a nice function on an interval [a, b]. Then if F is any antiderivative
for f , we have ∫ b

a
f = F |ba= F (b)− F (a),

by the fundamental theorem of calculus. We saw in (17.32) that under suitable
hypotheses on g, F ◦ g is an antiderivative for (f ◦ g)g′. Hence

∫ b

a
f

(
g(t)

)
g′(t)dt = F ◦ g |ba= F

∣∣∣
g(b)

g(a)
=

∫ g(b)

g(a)
f(u)du.

Hence we can find
∫ b

a
f

(
g(t)

)
g′(t)dt by the following ritual:

Let u = g(t). When t = a then u = g(a) and when t = b then u = g(b).
Also du = g′(t)dt. Hence

∫ b

a
f

(
g(t)

)
g′(t)dt =

∫ g(b)

g(a)
f(u)du = F (u)

∣∣∣
g(b)

g(a)
.
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17.51 Example. To find
∫ 4π2

π2

sin(
√

x)√
x

dx.

Let u =
√

x. When x = π2, then u = π, and when x = 4π2, then u = 2π.

Also du =
1

2
√

x
dx, so

∫ 4π2

π2

sin(
√

x)√
x

dx = 2
∫ 2π

π
sin(u)du = −2 cos u

∣∣∣
2π

π

= −2
(

cos(2π)− cos(π)
)

= −2(1 + 1) = −4.

We saw in (17.36) that if h is an inverse function for g, then an antideriva-
tive for f ◦ g is H ◦ g, where H is an antiderivative for f · h′. Thus

∫ b

a
f

(
g(t)

)
dt = H ◦ g |ba= H

∣∣∣
g(b)

g(a)
.

The ritual for finding
∫ b

a
f

(
g(t)

)
dt in this case is:

Let u = g(t). Then t = h(u) and dt = h′(u)du. When t = a then u = g(a),
and when t = b then u = g(b). Thus

∫ b

a
f

(
g(t)

)
dt =

∫ g(b)

g(a)
f(u)h′(u)du = H(u)

∣∣∣
g(b)

g(a)

where H is an antiderivative for fh′.

17.52 Example. To find
∫ ln(

√
3)

0

1

ex + e−x
dx.

Let u = ex. When x = 0 then u = 1, and when x = ln(
√

3) then u =
√

3.

Also x = ln(u), so dx =
1

u
du.

∫ ln(
√

3)

0

1

ex + e−x
dx =

∫ √
3

1

1

(u + 1
u
)
· 1

u
du

=
∫ √

3

1

1

u2 + 1
du = arctan(u) |

√
3

1

= arctan(
√

3)− arctan(1)

=
π

3
− π

4
=

π

12
.
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17.53 Exercise. Find the following integrals:

a)
∫ 1

0
x2(x3 + 1)3dx.

b)
∫ 3/2

0

1√
9− x2

dx.

c)
∫ 1

0
x
√

1− x dx.

17.54 Exercise. Find the area of the shaded region, bounded by the ellipse
x2

4
+ y2 = 1 and the lines x = ±1.

1

−2 2

−1

17.55 Example. In practice I would find many of the antiderivatives and
integrals discussed in this chapter by computer. For example, using Maple, I
would find
> int(sqrt(a^2+x^2),x);

1

2
x
√

a2 + x2 +
1

2
a2 ln

(
x +

√
a2 + x2

)

> int(sin(sqrt(x)),x=0..Pi^2);

2 π

> int(sqrt(4 - x^2),x=-1..1);

√
3 +

2

3
π

> int( (sec(x))^3,x);

1

2

sin( x )

cos( x )2
+

1

2
ln( sec( x ) + tan( x ) )
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> int(exp(a*x)*cos(b*x),x);

a e( a x ) cos( b x )

a2 + b2
+

b e( a x ) sin( b x )

a2 + b2

17.7 Rational Functions

In this section we present a few rules for finding antiderivatives of simple
rational functions.

To antidifferentiate
P (x)

(x− c)n
where P is a polynomial, make the substitu-

tion u = x− c.

17.56 Example. To find
∫ x2 + 1

(x− 2)2
dx.

Let u = x− 2. Then x = 2 + u so dx = du, and

∫ (x2 + 1)

(x− 2)2
dx =

∫ (2 + u)2 + 1

u2
du

=
∫ u2 + 4u + 5

u2
du

=
∫

1 +
4

u
+

5

u2
du

= u + 4 ln |u| − 5

u

= (x− 2) + 4 ln(|x− 2|)− 5

(x− 2)
.

To find
∫ R(x)

(x− a)(x− b)
dx where a 6= b and R is a polynomial of degree

less than 2.
We will find numbers A and B such that

R(x)

(x− a)(x− b)
=

A

(x− a)
+

B

(x− b)
. (17.57)

Suppose (17.57) were valid. If we multiply both sides by (x− a) we get

R(x)

(x− b)
= A +

B(x− a)

x− b
.
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Now take the limit as x goes to a to get

R(a)

a− b
= A.

The reason I took a limit here, instead of saying “now for x = a we get · · ·” is
that a is not in the domain of the function we are considering. Similarly

R(x)

x− a
=

A(x− b)

x− a
+ B,

and if we take the limit as x goes to b, we get

R(b)

b− a
= B.

Thus,
R(x)

(x− a)(x− b)
=

1

a− b

[
R(a)

x− a
− R(b)

x− b

]
. (17.58)

I have now shown that if there are numbers A and B such that (17.57) holds,
then (17.58) holds. Since I have not shown that such numbers exist, I will
verify directly that (17.58) is valid. Write R(x) = px + q. Then

1

a− b

[
R(a)

x− a
− R(b)

x− b

]
=

1

a− b

[
pa + q

x− a
− pb + q

x− b

]

=
1

(a− b)

[
(pa + q)(x− b)− (pb + q)(x− a)

(x− a)(x− b)

]

=
1

(a− b)

[
x(pa− pb)− q(b− a)

(x− a)(x− b)

]

=
1

(a− b)

(a− b)(px + q)

(x− a)(x− b)

=
px + q

(x− a)(x− b)
=

R(x)

(x− a)(x− b)
. |||

17.59 Example. To find
∫ x + 1

(x + 2)(x + 3)
dx.

Let
x + 1

(x + 2)(x + 3)
=

A

x + 2
+

B

x + 3
.



17.7. RATIONAL FUNCTIONS 355

Then
x + 1

x + 3
= A +

x + 2

x + 3
B,

so

A =
−2 + 1

−2 + 3
= −1,

and
x + 1

x + 2
= A

(x + 3)

x + 2
+ B,

so

B =
−3 + 1

−3 + 2
= 2.

Hence
∫ x + 1

(x + 2)(x + 3)
dx =

∫ −1

x + 2
+

2

x + 3
dx

= − ln(|x + 2|) + 2 ln(|x + 3|).

In this example I did not use formula (17.58), because I find it easier to re-
member the procedure than the general formula. I do not need to check my
answer, because my proof of (17.58) shows that the procedure always works.
(In practice, I usually do check the result because I am likely to make an
arithmetic error.)

To find
∫ R(x)

x2 + ax + b
dx where R is a polynomial of degree < 2, and

x2 + ax + b does not factor as a product of two first degree polynomials.
Complete the square to write

x2 + ax + b = (x−m)2 + k.

Then k > 0, since if k = 0 then we have factored x2 + ax + b, and if k < 0 we
can write k = −n2, and then

(x−m)2 + k = (x−m)2 − n2 =
(
(x−m)− n

)(
(x−m) + n

)

and again we get a factorization of x2 + ax + b. Since k > 0, we can write
k = q2 for some q ∈ R, and

x2 + ax + b = (x−m)2 + q2.
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Now ∫ R(x)

x2 + ax + b
dx =

∫ R(x)

(x−m)2 + q2
dx.

Make the substitution u = x−m to get an antiderivative of the form

∫ Au + B

u2 + q2
du =

A

2

∫ 2u

u2 + q2
du + B

∫ 1

u2 + q2
du

=
A

2
ln(u2 + q2) + B

∫ 1

u2 + q2
du.

The last antiderivative can be found by a trigonometric substitution.

17.60 Example. To find
∫ u

4u2 + 8u + 7
du:

Let

I =
∫ u

4u2 + 8u + 7
du =

1

4

∫ u

u2 + 2u + 7
4

du

=
1

4

∫ u

u2 + 2u + 1 + 3
4

du

=
1

4

∫ u

(u + 1)2 + 3
4

du.

Let t = u + 1, so u = t− 1 and du = dt. Then

I =
1

4

∫ t− 1

t2 + 3
4

dt =
1

8

∫ 2t

t2 + 3
4

dt− 1

4

∫ 1

t2 + 3
4

dt

=
1

8
ln(t2 +

3

4
)− 1

4

∫ 1

t2 + 3
4

dt

=
1

8
ln

(
(u + 1)2 +

3

4

)
− 1

4

∫ 1

t2 + 3
4

dt

=
1

8
ln(u2 + 2u +

7

4
)− 1

4

∫ 1

t2 + 3
4

dt.

Now let t =

√
3

2
tan θ, so dt =

√
3

2
sec2 θ dθ, and t2 +

3

4
=

3

4
sec2 θ. Then

∫ 1

t2 + 3
4

dt =
∫ √

3
2

sec2 θ
3
4
sec2 θ

dθ =
2√
3

∫
dθ
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=
2√
3
θ =

2√
3

arctan
( 2t√

3

)

=
2√
3

arctan
(2u + 2√

3

)
.

Hence,

I =
1

8
ln

(
u2 + 2u +

7

4

)
− 1

2
√

3
arctan

(2u + 2√
3

)
.

To find
∫ R(x)

x2 + ax + b
dx where R is a polynomial of degree > 1.

First use long division to write

R(x)

x2 + ax + b
= Q(x) +

P (x)

x2 + ax + b

where Q is a polynomial, and P is a polynomial of degree ≤ 1. Then use one
of the methods already discussed.

17.61 Example. To find
∫ x3 + 1

x2 + 1
dx. By using long division, we get

x

x
2 + 1

)

x
3 +1

x
3 +x

−x +1

x3 + 1

x2 + 1
= x +

−x + 1

x2 + 1
.

Hence

∫ x3 + 1

x2 + 1
dx =

∫
x− x

x2 + 1
+

1

x2 + 1
dx

=
1

2
x2 − 1

2
ln(x2 + 1) + arctan(x).
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17.62 Example. In exercise 17.7, you showed that ln
(
| sec(x)+tan(x)|

)
is

an antiderivative for sec(x). The function ln
(
| sec(x)+tan(x)|

)
in that exercise

appeared magically with no motivation. I will now derive the formula, using
standard methods:

∫
sec(x) dx =

∫ 1

cos(x)
dx =

∫ cos(x)

cos2(x)
dx =

∫ cos(x)

1− sin2(x)
dx.

Now let u = sin(x). Then du = cos(x) dx, and

∫
sec(x) dx =

∫ du

1− u2
.

Suppose
1

1− u2
=

A

1− u
+

B

1 + u
. Then

1

1 + u
= A +

B(1− u)

(1 + u)
,

and if we take the limit of both sides as u → 1 we get A =
1

2
. Also

1

1− u
=

A(1 + u)

1− u
+ B,

and if we take the limit as u → −1, we get B =
1

2
. Thus

∫
sec(x) dx =

∫ 1

1− u2
du

=
1

2

∫ (
1

1− u
+

1

1 + u

)
du

=
1

2
[− ln (|1− u|) + ln (|1 + u|)]

=
1

2
ln

(∣∣∣∣
1 + u

1− u

∣∣∣∣
)

=
1

2
ln

(∣∣∣∣∣
1 + sin(x)

1− sin(x)

∣∣∣∣∣

)
.

Now

1 + sin(x)

1− sin(x)
=

1 + sin(x)

1− sin(x)
· 1 + sin(x)

1 + sin(x)
=

(
1 + sin(x)

)2

1− sin2(x)
=

(
1 + sin(x)

)2

cos2(x)
,
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so

1

2
ln

(∣∣∣∣∣
1 + sin(x)

1− sin(x)

∣∣∣∣∣

)
=

1

2
ln




∣∣∣∣∣
1 + sin(x)

cos(x)

∣∣∣∣∣
2

 = ln

(∣∣∣∣∣
1 + sin(x)

cos(x)

∣∣∣∣∣

)

= ln
(
| sec(x) + tan(x)|

)
,

and thus ∫
sec(x) dx = ln

(
| sec(x) + tan(x)|

)
.

17.63 Exercise. Criticize the following argument:

I want to find
∫ x2

x2 − 1
dx =

∫ x2

(x− 1)(x + 1)
dx. Suppose

x2

(x− 1)(x + 1)
=

A

x− 1
+

B

x + 1
.

Then
x2

x + 1
= A +

(x− 1)B

x + 1
.

If we take the limit of both sides as x → 1, we get
1

2
= A. Also

x2

x− 1
=

A(x + 1)

x− 1
+ B,

and if we take the limit of both sides as x → −1, we get −1

2
= B. Thus

x2

x2 − 1
=

1

2

1

x− 1
− 1

2

1

x + 1
.

Hence, ∫ x2

x2 − 1
dx =

1

2
ln(|x− 1|)− 1

2
ln(|x + 1|).

17.64 Exercise. Find the following antiderivatives:

a)
∫ 1

4x2 − 1
dx

b)
∫ 1

4x2 + 1
dx
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c)
∫ x + 1

x2 − 6x + 8
dx

d)
∫ x + 1

x2 − 6x + 9
dx

e)
∫ 1

9x2 + 6x + 2
dx

f)
∫ x3

x2 + 1
dx

g)
∫ 1√

x2 + 2x + 2
dx

17.65 Exercise. Find the following antiderivatives:

a)
∫ cos(ax)

sin3(ax)
dx.

b)
∫ sin(t) cos(t)

cos2(t) + 1
dt.

c)
∫ 1

(1− t)3
dt.

d)
∫ 1

5 + 4x + x2
dx.

e)
∫

x3
√

x2 + 1dx.

f)
∫ 1√−3− 4x− x2

.

g)
∫ sin(2θ)

cos2(θ)− sin2(θ)
dθ.

h)
∫

(1 + tan(u))2du.

i) Choose a number p, and find
∫

xp(x10 − 2)10dx.

j) Choose a number q, and find
∫

xqe−
1
x dx.
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k)
∫

xe−x2

dx.

l)
∫ u3

1 + u2
du.

m)
∫

x2 arctan(x)dx.

n)
∫

x3(1 + x)
1
4 dx.

o)
∫

xe2xdx.

p)
∫

arcsin(x)dx.


