
Chapter 16

Fundamental Theorem of
Calculus

16.1 Definition (Nice functions.) I will say that a real valued function
f defined on an interval [a, b] is a nice function on [a, b], if f is continuous on
[a, b] and integrable on every subinterval of [a, b].

Remark: We know that piecewise monotonic continuous functions on [a, b]
are nice. It turns out that every continuous function on [a, b] is nice, but
we are not going to prove this. The theorems stated in this chapter for nice
functions are usually stated for continuous functions. You can find a proof
that every continuous function on an interval [a, b] is integrable on [a, b] (and
hence that every continuous function on [a, b] is nice on [a, b]) in [44, page
246] or in [1, page 153]. However both of these sources use a slightly different
definition of continuity and of integral than we do, so you will need to do some
work to translate the proofs in these references into proofs in our terms. You
might try to prove the result yourself, but the proof is rather tricky. For all
the applications we will make in this course, the functions examined will be
continuous and piecewise monotonic so the theorems as we prove them are
good enough.

16.2 Exercise. Can you give an example of a continuous function on
a closed interval that is not piecewise monotonic? You may describe your
example rather loosely, and you do not need to prove that it is continuous.

16.3 Theorem (Fundamental theorem of calculus I.) Let g be a nice

function on [a, b]. Suppose G is an antiderivative for g on [a, b]. Then G is
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an indefinite integral for g on [a, b]; i.e.,

∫ q

p

g = G(q) − G(p) for all p, q ∈ [a, b]. (16.4)

Proof: By the definition of antiderivative, G is continuous on [a, b] and G′ = g

on (a, b). Let p, q be arbitrary points in [a, b]. I will suppose p < q. (Note
that if (16.4) holds when p < q, then it holds when q < p, since both sides of
the equation change sign when p and q are interchanged. Also note that the
theorem clearly holds for p = q.)

Let P = {x0, · · · , xm} be any partition of [p, q], and let i be an integer
with 1 ≤ i ≤ m. If xi−1 < xi we can apply the mean value theorem to G on
[xi−1, xi] to find a number si ∈ (xi−1, xi) such that

g(si)(xi − xi−1) = G′(si)(xi − xi−1) = G(xi) − G(xi−1).

If xi = xi−1, let si = xi. Then S = {si, · · · , sm} is a sample for P such that

∑

(g, P, S) =
m

∑

i=1

g(si)(xi − xi−1)

=
m

∑

i=1

G(xi) − G(xi−1)

= G(xm) − G(x0) = G(q) − G(p).

We have shown that for every partition P of [p, q] there is a sample S for P

such that
∑

(g, P, S) = G(q) − G(p).

Let {Pn} be a sequence of partitions for [p, q] such that {µ(Pn)} → 0, and for
each n ∈ Z+ let Sn be a sample for Pn such that

∑

(g, Pn, Sn) = G(q) − G(p).

Then, since g is integrable on [q, p],

∫ q

p
g = lim{

∑

(g, Pn, Sn)}

= lim{G(q) − G(p)} = G(q) − G(p). |||
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16.5 Example. The fundamental theorem will allow us to evaluate many

integrals easily. For example, we know that
d

dx

(

arctan(x)
)

=
1

1 + x2
. Hence,

by the fundamental theorem,

∫ 1

0

1

1 + x2
dx = arctan(x) |10= arctan(1) − arctan(0)

=
π

4
− 0 =

π

4
.

y = 1
1+x2y =

√
1 − x2

11

11

Two sets with the same area

This says that the two sets

{(x, y): 0 ≤ x ≤ 1 and 0 ≤ y ≤
√

1 − x2}

and

{(x, y): 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1

1 + x2
}

have the same area – a rather remarkable result.

16.6 Theorem (Mean value theorem for integrals.) Let f be a nice

function on an interval [p, q], where p < q. Then there is a number c ∈ (p, q)
such that

∫ q

p

f = f(c)(q − p) i.e., f(c) =
1

q − p

∫ q

p

f.

Proof: Since f is continuous on [p, q] we can find numbers r, s ∈ [p, q] such
that

f(r) ≤ f(x) ≤ f(s) for all x ∈ [p, q].
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By the inequality theorem for integrals
∫ q

p

f(r) ≤
∫ q

p

f ≤
∫ q

p

f(s);

(here f(r) and f(s) denote constant functions) i.e.,

f(r)(q − p) ≤
∫ q

p

f ≤ f(s)(q − p),

i.e.,

f(r) ≤ 1

q − p

∫ q

p
f ≤ f(s).

We can now apply the intermediate value property to f on the interval whose
endpoints are r and s to get a number c between r and s such that

f(c) =
1

q − p

∫ q

p
f.

The number c is in the interval (p, q), so we are done. |||

16.7 Corollary. Let f be a nice function on a closed interval whose end-

points are p and q where p 6= q. Then there is a number c between p and q

such that

f(c) =
1

q − p

∫ q

p

f.

16.8 Exercise. Explain how corollary 16.7 follows from theorem 16.6.
(There is nothing to show unless q < p)

16.9 Lemma. Let f be a function such that f is integrable on every subin-

terval of [a, b]. Let c ∈ [a, b] and let

F (x) =
∫ x

c

f for all x ∈ [a, b].

Then F is continuous on [a, b].

Proof: Let t ∈ [a, b]. I will show that F is continuous at t. Since f is integrable
on [a, b] there is a number M such that

−M ≤ f(x) ≤ M for all x ∈ [a, b].
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By the corollary to the inequality theorem for integrals (8.17), it follows that

∣

∣

∣

∫ t

s

f
∣

∣

∣ ≤ M |s − t|

for all s, t ∈ [a, b]. Thus, for all s, t ∈ [a, b],

0 ≤ |F (s) − F (t)| =
∣

∣

∣

∫ s

c

f −
∫ t

c

f
∣

∣

∣ =
∣

∣

∣

∫ s

t

f
∣

∣

∣ ≤ M |s − t|.

Now lim
s→t

M |s − t| = 0, so by the squeezing rule for limits of functions,

lim
s→t

|F (s) − F (t)| = 0. It follows that lims→t F (s) = F (t). |||.

16.10 Theorem (Fundamental theorem of calculus II.) Let f be a nice

function on [a, b], and let c ∈ [a, b]. Let

G(x) =
∫ x

c
f for all x ∈ [a, b].

Then G is an antiderivative for f , i.e.

d

dx

∫ x

c

f =
d

dx

∫ x

c

f(t) dt = f(x). (16.11)

In particular, every nice function on [a, b] has an antiderivative on [a, b].

Proof: Let
G(x) =

∫ x

c

f for all x ∈ [a, b]

and let t be a point in (a, b). Let {xn} be any sequence in [a, b] \ {t} such that
{xn} → t. Then

G(xn) − G(t)

xn − t
=

1

xn − t

[

∫ xn

c
f −

∫ t

c
f

]

=
1

xn − t

∫ xn

t
f.

By the mean value theorem for integrals, there is a number sn between xn and
t such that

G(xn) − G(t)

xn − t
= f(sn).
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Now
0 ≤ |sn − t| ≤ |xn − t| for all n

and since {|xn − t|} → 0, we have {|sn − t|} → 0, by the squeezing rule for
sequences. Since f is continuous, we conclude that {f(sn)} → f(t); i.e.,

{G(xn) − G(t)

xn − t

}

→ f(t);

i.e.,

lim
x→t

G(x) − G(t)

x − t
= f(t).

This proves that G′(t) = f(t) for t ∈ (a, b). In addition G is continuous on
[a, b] by lemma 16.9. Hence G is an antiderivative for f on [a, b]. |||
Remark Leibnitz’s statement of the fundamental principle of the calculus was
the following:

Differences and sums are the inverses of one another, that is to
say, the sum of the differences of a series is a term of the series,
and the difference of the sums of a series is a term of the series;
and I enunciate the former thus,

∫

dx = x, and the latter thus,
d

∫

x = x[34, page 142].

To see the relation between Leibnitz’s formulas and ours, in the equation

d
∫

x = x, write x = ydt to get d
∫

ydt = ydt, or
d

dt

∫

ydt = y. This corre-

sponds to equation (16.11). Equation (16.4) can be written as

∫ q

p

dG

dx
dx = G(q) − G(p).

If we cancel the dx’s (in the next chapter we will show that this is actually
justified!) we get

∫ q
p dG = G(q)−G(p). This is not quite the same as

∫

dx = x.
However if you choose the origin of coordinates to be (p, G(p)), then the two
formulas coincide.

To emphasize the inverse-like relation between differentiation and integra-
tion, I will restate our formulas for both parts of the the fundamental theorem,
ignoring all hypotheses:

d

dx

∫ x

c

f(t)dt = f(x) and
∫ x

c

d

dt
f(t)dt = f(x) − f(c).



326 CHAPTER 16. FUNDAMENTAL THEOREM OF CALCULUS

By exploiting the ambiguous notation for indefinite integrals, we can get a
form almost identical with Leibniz’s:

d

dx

∫

f(x)dx = f(x) and
∫

d

dx
f(x)dx = f(x).

16.12 Example. Let

F (x) =
∫ x

1
et2dt,

G(x) =
∫ x3

1
et2dt,

H(x) = e−x2

∫ x

1
et2dt.

We will calculate the derivatives of F, G, and H . By the fundamental theorem,

F ′(x) = ex2

.

Now G(x) = F (x3), so by the chain rule,

G′(x) = F ′(x3) · 3x2

= e(x3)
2

· 3x2 = 3x2ex6

.

We have H(x) = e−x2

F (x), so by the product rule,

H ′(x) = e−x2

F ′(x) + e−x2

(−2x)F (x)

= e−x2

ex2

+ e−x2

(−2x)
∫ x

0
et2dt

= 1 − 2xe−x2

∫ x

0
et2dt.

16.13 Exercise. Calculate the derivatives of the following functions. Sim-
plify your answers as much as you can.

a) F (x) =
∫ x

0

1√
1 + t2

dt

b) G(x) =
∫ x

0

1√
t2 − 1

dt

c) H(x) =
∫ x

2

1√
t2 − 1

dt



327

d) K(x) =
∫ sinh(x)

1

1√
1 + t2

dt

e) L(x) =
∫ cosh(x)

2

1√
t2 − 1

dt.

(We defined cosh and sinh in exercise 14.56.) Find simple formulas (not in-
volving any integrals) for K and for L.

16.14 Exercise. Use the fundamental theorem of calculus to find

a)
∫ π

4

0
sec2 x dx.

b)
∫ 1

√

2

0

1√
1 − x2

dx.

c)
∫ 1

0
ex dx.

16.15 Exercise. Let F1 and F2 be the functions whose graphs are shown
below:

5

53 71

731

1

1

{y = F2(x)}

{y = F1(x)}

Let Gi(x) =
∫ x

0
Fi(t) dt for 0 ≤ t ≤ 8. Sketch the graphs of G1 and G2.

Include some discussion about why your answer is correct.


