
Chapter 15

The Second Derivative

15.1 Higher Order Derivatives

15.1 Definition (Higher order derivatives.) Let f be a function whose
domain is a subset of R. We define a function f ′ (called the derivative of f)
by

domain(f ′) = {x ∈ dom(f) : f ′(x) exists}.
and for all x ∈ dom(f), the value of f ′ at x is the derivative f ′(x). We may also
write f (1) for f ′. Since f ′ is itself a function, we can calculate its derivative:
this derivative is denoted by f ′′ or f (2), and is called the second derivative of
f . For integers n ≥ 2 we define

f (n+1) = (f (n))′. (15.2)

and we call f (n) the nth derivative of f . We also define

f (0) = f.

In Leibniz’s notation we write

dnf

dxn
= f (n), or

dn

dxn
f = f (n), or

(
d

dx

)(n)

f(x) = f (n)(x) or
dnf

dxn
= f (n)(x),

so that equation (15.2) becomes

dn+1f

dxn+1
=

d

dx

(
dnf

dxn

)
.
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If a and b are real numbers, and f and g are functions then from known
properties of the derivative we can show that

(af + bg)(n) = af (n) + bg(n) on dom(f (n)) ∩ dom(g(n)).

or
dn

dxn
(af + bg) = a

dnf

dxn
+ b

dnf

dxn
.

15.3 Examples. If h(x) = sin(ωx), where ω ∈ R, then

h′(x) = ω cos(ωx),

h′′(x) = −ω2 sin(ωx),

h(3)(x) = −ω3 cos(ωx),

h(4)(x) = ω4 sin(ωx) = ω4h(x).

It should now be apparent that

h(4n+k)(x) = ω4nh(k)(x) for k = 0, 1, 2, 3.

so that
h(98)(x) = h(4·24+2)(x) = ω96h(2)(x) = −ω98 sin(ωx).

If

g(x) = 1 + x +
x2

2!
+

x3

3!

then

g′(x) = 1 + x +
x2

2!
,

g′′(x) = 1 + x,

g(3)(x) = 1,

g(n)(x) = 0 for n ∈ Z≥4.
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If y = ln(x) then

dy

dx
=

1

x
,

d2y

dx2
= − 1

x2
,

d3y

dx3
=

2

x3
.

15.4 Exercise. Calculate g(5)(t) if g(t) = t4 ln(t).

15.5 Exercise. Let g(t) = tf(t). Calculate g′(t), g′′(t), g(3)(t) and g(4)(t)
in terms of f(t), f ′(t), f ′′(t), f (3)(t) and f (4)(t). What do you think is the
formula for g(n)(t)?

15.6 Exercise. Find
d2y

dx2
if y = 1/(x2 − 1).

15.7 Exercise. Find f ′′(x) if f(x) = e
1

x2 = exp
(

1

x2

)
.

15.8 Exercise. Suppose f ′′(x) = 0 for all x ∈ R. What can you say about
f?

15.9 Exercise. Let f and g be functions such that f (2) and g(2) are defined
on all of R. Show that

(fg)(2) = fg(2) + 2f (1)g(1) + f (2)g.

Find a similar function for (fg)(3) (assuming that f (3) and g(3) are defined.)

In Leibniz’s calculus, d2f or ddf was actually an infinitely small quantity

that was so much smaller than dx that the quotient
d2f

dx
was zero, and

d2f

dx2

was obtained by multiplying dx by itself and then dividing the result into d2f .

Leibniz also used notations like
ddy

ddx
and

dxds

ddy
for which our modern notation

has no counterparts. Leibniz considered the problem of defining a meaning
for d

1
2 f , but he did not make much progress on this problem. Today there is

considerable literature on fractional derivatives. A brief history of the subject
can be found in [36, ch I and ch VIII].
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15.10 Exercise. Let a be a real number. Show that for k = 0, 1, 2, 3

dk

dxk
eax = akeax. (15.11)

After doing this it should be clear that equation (15.11), in fact holds for all
n ∈ Z≥0 (this can be proved by induction). Now suppose that a > 0 and we
will define

dr

dxr
eax = areax for all r ∈ R. (15.12)

Show that then for all p and q in R,

(
d

dx

)p ((
d

dx

)q

(eax)

)
=

(
d

dx

)p+q

(eax).

Find

(
d

dx

) 1
2

e3x and

(
d

dx

) 1
2

e5x. What do you think

(
d

dx

) 1
2 (

3e3x + 4e5x
)

should be?
Equation (15.12) was the starting point from which Joseph Liouville (1809–
1882) developed a theory of fractional calculus[36, pp 4-6].

15.13 Exercise. Let a and b be real numbers. Show that for k = 0, 1, 2, 3

(
d

dx

)k

cos(ax + b) = ak cos(ax + b +
kπ

2
). (15.14)

After doing this exercise it should be clear that in fact equation (15.14) holds
for all k ∈ Z≥0 (this can be proved by induction). Now suppose that a > 0,
and we will define

(
d

dx

)r

cos(ax + b) = ar cos(ax + b +
rπ

2
) for all r ∈ R. (15.15)

Show that for all p and q in R

(
d

dx

)p ((
d

dx

)q

cos(ax + b)

)
=

(
d

dx

)p+q

cos(ax + b).

Equation (15.15) was used as the starting point for a definition of fractional
derivatives for general functions, by Joseph Fourier (1768–1830)[36, page 3].
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15.2 Acceleration

15.16 Definition (Acceleration.) If a particle p moves in a straight line
so that its position at time t is h(t), we have defined its velocity at time t to be
h′(t). We now define its acceleration at time t to be h′′(t), so that acceleration is
the derivative of velocity. Thus if a particle moves with a constant acceleration

of 1
ft./sec.

sec. , then every second its velocity increases by one ft./sec.

15.17 Example. A mass on the end of a spring moves so that its height
at time t is −A cos(ωt), where A and ω are positive numbers. If we denote its
velocity at time t by v(t), and its acceleration at time t by a(t) then

h(t) = −A cos(ωt)

v(t) = h′(t) = Aω sin(ωt)

a(t) = v′(t) = Aω2 cos(ωt)

From this we see that the acceleration is always of opposite sign from the
position: when the mass is above the zero position it is being accelerated
downward, and when it is below its equilibrium position it is being accelerated
upward. Also we see that the magnitude of the acceleration is largest when
the velocity is 0.

15.18 Definition (Acceleration due to gravity.) If a particle p moves
near the surface of the earth, acted on by no forces except the force due to
gravity, then p will move with a constant acceleration −g which is independent
of the mass of p. The value of g is

g =
32ft./sec.

sec.
(approx.) or g =

9.8meter/sec.

sec.
(approx.).

We call g the acceleration due to gravity. Actually, the value of g varies slightly
over the surface of the earth, so there is no exact value for g. The law just
described applies in situations when air resistance and buoyancy can be ne-
glected. It describes the motion of a falling rock well, but it does not describe
a falling balloon.

Remark: When I solve applied problems, I will usually omit all units (e.g.
feet or seconds) in my calculations, and will put them in only in the final
answers.
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15.19 Example. A juggler J tosses a ball vertically upward from a height
of 4 feet above the ground with a speed of 16 ft./sec. Let h(t) denote the
height of the ball above the ground at time t. We will set our clock so that
t = 0 corresponds to the time of the toss:

h(0) = 4; h′(0) = 16.

We will suppose that while the ball is in the air, its motion is described by a
differentiable function of t. We assume that

h′′(t) = −g = −32.

We know one function whose derivative is −g:

if s(t) = −gt, then s′(t) = −g.

By the antiderivative theorem it follows that there is a constant v0 such that

h′(t) = s(t) + v0 = −gt + v0.

Moreover we can calculate v0 as follows:

(16 = h′(0) = −g · 0 + v0)=⇒(v0 = 16).

Thus
h′(t) = −gt + 16.

We know a function whose derivative is −gt + 16:

if w(t) = −gt2

2
+ 16t, then w′(t) = −gt + 16.

Thus there is a constant h0 such that

h(t) = w(t) + h0 = −gt2

2
+ 16t + h0.

To find h0 we set t = 0:

(4 = h(0) = −g · 02

2
+ 16 · 0 + h0)=⇒(h0 = 4).

Thus

h(t) = −gt2

2
+ 16t + 4.
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The ball will reach its maximum height when h′(t) = 0, i.e. when

t =
16

g
=

16

32
=

1

2
.

The maximum height reached by the ball is

h(
1

2
) = −1

2
· 32 · (1

2
)2 +

16

2
+ 4 = 8,

so the ball rises to a maximum height of 8 feet above the ground.

15.20 Example (Conservation of energy.) Suppose that a particle p
moves near the surface of the earth acted upon by no forces except the force
of gravity. Let v(t) and h(t) denote respectively its height above the earth and
its velocity at time t. Then

dv

dt
= h′′(t) = −g,

so

v
dv

dt
= −gv = −g

dh

dt
.

Now

v
dv

dt
=

d

dt
(
1

2
v2),

so we have
d

dt
(
1

2
v2) =

d

dt
(−gh).

It follows that there is a constant K such that

1

2
v2 = −gh + K,

or
1

2
v2 + gh = K.

If m is the mass of the particle p then

1

2
mv2 + mgh = Km. (15.21)

The quantity 1
2
mv2 is called the kinetic energy of p, and the quantity mgh is

called the potential energy of p. Equation (15.21) states that as p moves, the
sum of its potential energy end its kinetic energy remains constant.
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15.22 Exercise. A particle moves in a vertical line near the surface of the
earth, acted upon by no forces except the force of gravity. At time 0 it is at
height h0, and has velocity v0. Derive the formula for the height of the particle
at time t > 0.

15.23 Exercise. The acceleration due to gravity on the moon is approxi-
mately

gm = .17g

where g denotes the acceleration due to gravity on the earth. A juggler J on
the moon wants to toss a ball vertically upward so that it rises 4 feet above
its starting height. With what velocity should the ball leave J ’s hand?

15.3 Convexity

15.24 Definition (Convexity) Let f be a differentiable function on an
interval (a, b). We say that f is convex upward over (a, b) or that f holds
water over (a, b) if and only if for each point t in (a, b), the tangent line to
graph(f) at (t, f(t)) lies below the graph of f .

convex  upward  curve  (holds  water)

Since the equation of the tangent line to graph(f) at (t, f(t)) is

y = f(t) + f ′(t)(x− t),

the condition for f to be convex upward over (a, b) is that for all x and t in
(a, b)

f(t) + f ′(t)(x− t) ≤ f(x). (15.25)
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Condition (15.25) is equivalent to the two conditions:

f ′(t) ≤ f(x)− f(t)

x− t
whenever t < x,

and
f(t)− f(x)

t− x
≤ f ′(t) whenever x < t.

These last two conditions can be written as the single condition

f ′(p) ≤ f(q)− f(p)

q − p
≤ f ′(q) whenever p < q. (15.26)

We say that f is convex downward over (a, b), or that f spills water over
(a, b) if and only if for each point t in (a, b), the tangent line to graph(f) at
(t, f(t)) lies above the graph of f .

convex  downward  curve  (spills  water)

This condition is equivalent to the condition that for all points p, q ∈ (a, b)

f ′(p) ≥ f(q)− f(p)

q − p
≥ f ′(q) whenever p < q.

15.27 Theorem. Let f be a differentiable function over the interval (a, b).
Then f is convex upward over (a, b) if and only if f ′ is increasing over (a, b).
(and similarly f is convex downward over (a, b) if and only if f ′ is decreasing
over (a, b).)

Proof: If f is convex upward over (a, b), then it follows from (15.26) that f ′

is increasing over (a, b).



15.3. CONVEXITY 315

Now suppose that f ′ is increasing over (a, b). Let p, q be distinct points in
(a, b). By the mean value theorem there is a point c between p and q such that

f ′(c) =
f(p)− f(q)

p− q
.

If p < q then p < c < q so since f ′ is increasing over (a, b)

f ′(p) ≤ f ′(c) ≤ f ′(q),

i.e.

f ′(p) ≤ f(p)− f(q)

p− q
≤ f ′(q).

Thus condition (15.26) is satisfied, and f is convex upward over (a, b).

15.28 Corollary. Let f be a function such that f ′′(x) exists for all x in the
interval (a, b). If f ′′(x) ≥ 0 for all x ∈ (a, b) then f is convex upward over
(a, b). If f ′′(x) ≤ 0 for all x ∈ (a, b) then f is convex downward over (a, b).

15.29 Exercise. Prove one of the two statements in corollary 15.28.

15.30 Lemma (Converse of corollary 12.26) Let f be a real function such
that f is continuous on [a, b] and differentiable on (a, b). If f is increasing on
[a, b], then f ′(x) ≥ 0 for all x ∈ (a, b).

Proof: let p ∈ (a, b). Choose δ > 0 such that (p − δ, p + δ) ⊂ (a, b). Then
{p + δ

2n
} is a sequence such that

{p +
δ

2n
} → p,

and hence

{f(p + δ
2n

)− f(p)

(p + δ
2n

)− p
} → f ′(p).

Since f is increasing on (a, b), we have

f(p + δ
2n

)− f(p)

(p + δ
2n

)− p
≥ 0

for all n ∈ Z+, and it follows that

f ′(p) ≥ 0 for all p ∈ (a, b). |||
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15.31 Definition (Inflection point) Let f be a real function, and let
a ∈ domf . We say that a is a point of inflection for f if there is some ε > 0
such that (a−ε, a+ε) ⊂ domf , and f is convex upward on one of the intervals
(a− ε, a), (a, a + ε), and is convex downward on the other.

inflection  points

15.32 Theorem (Second derivative test for inflection points) Let f
be a real function, and let a be a point of inflection for f . If f ′′ is defined and
continuous in some interval (a− δ, a + δ) then f ′′(a) = 0.

Proof: We will suppose that f is convex upward on the interval (a−δ, a) and
is convex downward on (a, a+δ). (The proof in the case where these conditions
are reversed is essentially the same). Then f ′ is increasing on (a − δ, a), and
f ′ is decreasing on (a, a + δ). By (15.30), f ′′(x) ≥ 0 for all x ∈ (a− δ, a), and
f ′′(x) ≤ 0 for all x ∈ (a, a + δ). We have

f ′′(a) = lim{f ′′(a +
δ

2n
)} ≤ 0,

and

f ′′(a) = lim{f ′′(a− δ

2n
)} ≥ 0.

It follows that f ′′(a) = 0. |||

15.33 Example. When you look at the graph of a function, you can
usually “see” the points where the second derivative changes sign. However,
most people cannot “see” points where the second derivative is undefined.
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graph(  )gfgraph(  )

p q

By inspecting graph(f), you can see that f has a discontinuity at p.
By inspecting graph(g), you can see that g is continuous everywhere, but

g′ is not defined at q.
By inspecting graph(h) in figure a below, you can see that h′ is continuous,

but you may have a hard time seeing the point where h′′ is not defined.

figure a  graph(h) figure b

The function h is defined by

h(x) =

{
x2 − 5

2
x + 2 if 0 ≤ x ≤ 3

2
.

1
2
x2 − x + 7

8
if 3

2
< x ≤ 2.

(15.34)

so h′′(x) = 2 for 0 < x < 3
2
, and h′′(x) = 1 for 3

2
< x < 2, and h′′(3

2
) is not

defined. We constructed h by pasting together two parabolas. Figure b shows
the two parabolas, one having a second derivative equal to 1, and the other
having second derivative equal to 2.
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15.35 Exercise. Let h be the function described in formula (15.34). Draw
graphs of h′ and h′′.

15.36 Entertainment (Discontinuous derivative problem.) There ex-
ists a function f such that f is differentiable everywhere on R, but f ′ is
discontinuous somewhere. Find such a function.

15.37 Exercise. Let f(x) = x4. Show that f ′′(0) = 0, but 0 is not a point
of inflection for f . Explain why this result does not contradict theorem 15.32

15.38 Example. Let

f(x) =
1

1 + x2
.

Then

f ′(x) =
−2x

(1 + x2)2
,

and

f ′′(x) =
(1 + x2)2(−2)− (−2x)(2(1 + x2)(2x))

(1 + x2)4
=

2(3x2 − 1)

(1 + x2)3
.

Thus the only critical point for f is 0. Also,

(f ′(x) > 0 ⇐⇒ x < 0) and (f ′(x) < 0 ⇐⇒ x > 0),

so f is increasing on (−∞, 0) and is decreasing on (0,∞). Thus f has a
maximum at 0, and f has no minima.

We see that f ′′(x) = 0 ⇐⇒ x2 = 1
3
, and moreover

(f ′′(x) < 0) ⇐⇒ x ∈

−

√
1

3
,

√
1

3


 ,

so f spills water over the interval
(
−

√
1
3
,
√

1
3

)
, and f holds water over each

of the intervals
(
−∞,−

√
1
3

)
and

(√
1
3
,∞

)
. Thus f has points of inflection at

±
√

1
3
. We can use all of this information to make a reasonable sketch of the

graph of f . Note that f(x) > 0 for all x, f(0) = 1, and f
(
±

√
1
3

)
= 3

4
, and√

1
3

is approximately 0.58.
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−2 −1 21

point  of  inflection point  of  inflection

{

y =
1

1 + x2

}

15.39 Exercise. Discuss the graphs of the following functions. Make use
of all the information that you can get by looking at the functions and their
first two derivatives.

a) f(x) = 5x4 − 4x5.
b) G(x) = 5x3 − 3x5.

c) H(x) = e−
1

x2 .


