
Chapter 13

Applications

13.1 Curve Sketching

13.1 Example. Let f(x) =
x3

1 − x2
. Here dom(f) = R \ {±1} and f is an

odd function. We have

f ′(x) =
(1 − x2)3x2 − x3(−2x)

(1 − x2)2
=

3x2 − x4

(1 − x2)2
=

x2(3 − x2)

(1 − x2)2
.

From this we see that the critical set for f is {0,
√

3,−
√

3}. We can determine
the sign of f ′(x) by looking at the signs of its factors: Since f is odd, I will
consider only points where x > 0.

0 < x < 1 1 < x <
√

3
√

3 < x

x2

(1−x2)2
+ + +

3 − x2 + + −

f ′(x) + + −

Thus f is strictly increasing on (0, 1) and on (1,
√

3), and f is strictly decreasing
on (

√
3,∞). Also

f(
√

3) =
3
√

3

1 − 3
= −3

2

√
3 and f(0) = 0.

272
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We see that |f(x)| is unbounded on any interval (1 − δ, 1) or (1, 1 + δ), since
the numerator of the fraction is near to 1, and the denominator is near to 0
on these intervals. Also

f(x) =
x3

1 − x2
= x

( x2

1 − x2

)

= x
( 1

−1 + 1
x2

)

,

so |f(x)| is large when x is large. (f(x) is the product of x and a number near
to −1.) Using this information we can make a reasonable sketch of the graph
of f .

−3

3

−2

−1

2

1

−2 −1−3 321

(
√

3,−3
2

√
3)

(−
√

3, 3
2

√
3)

Here f has a local maximum at
√

3 and a local minimum at −
√

3. It has
no global extreme points.

13.2 Definition (Infinite limits.) Let {xn} be a real sequence. We say

lim{xn} = +∞ or {xn} → +∞

if for every B ∈ R there is an N ∈ Z+ such that for all n ∈ Z≥N

(

xn > B
)

.
We say

lim{xn} = −∞ or {xn} → −∞
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if for every B ∈ R there is an N ∈ Z+ such that for all n ∈ Z≥N

(

xn < B
)

.

Let f be a real valued function such that dom(f) ⊂ R, and let a ∈ R. We say

lim
x→a+

f(x) = +∞

if dom(f) contains an interval (a, a+ǫ) and for every sequence {xn} in dom(f)∩(a,∞)

({xn} → a) =⇒
(

{f(xn)} → +∞
)

.

We say
lim

x→a−

f(x) = +∞

if dom(f) contains an interval (a−ǫ, a) and for every sequence {xn} in dom(f)∩(−∞, a)

({xn} → a) =⇒
(

{f(xn)} → +∞
)

.

Similar definitions can be made for

lim
x→a+

f(x) = −∞, lim
x→a−

f(x) = −∞.

We say lim
x→+∞

f(x) = +∞ if dom(f) contains some interval (a,∞) and for every

sequence {xn} in dom(f)

{xn} → +∞ =⇒ {f(xn)} → +∞.

Similarly if c ∈ R we can define

lim
x→+∞

f(x) = −∞, lim
x→+∞

f(x) = c, lim
x→−∞

f(x) = +∞, etc.

13.3 Example. If f is the function in the previous example (i.e. f(x) =
x3

1 − x2
)

then

lim
x→1+

f(x) = −∞,

lim
x→1−

f(x) = +∞,

lim
x→+∞

f(x) = −∞,

and

lim
x→−∞

f(x) = +∞.
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Also,

lim
x→∞

1

x
= 0,

lim
x→0+

x

|x| = 1,

lim
x→0−

x

|x| = −1,

and

lim
x→+∞

x2 + 1

x2 + 3x
= lim

x→+∞

1 + 1
x2

1 + 3
x

= 1.

The situation here is very similar to the situation in the case of ordinary
limits, and we will proceed without writing out detailed justifications.

13.4 Exercise. Write out definitions for
(

lim
x→+∞

f(x) = −∞
)

and for
(

lim
x→a−

f(x) = −∞
)

.

13.5 Exercise. Find one function f satisfying all of the following condi-
tions:

lim
x→+∞

f(x) = 3,

lim
x→3+

f(x) = +∞,

lim
x→3−

f(x) = +∞.

13.6 Example. Let f(x) = sin(2x) + 2 sin(x). Then f(x + 2π) = f(x) for
all x ∈ R, so I will restrict my attention to the interval [−π, π]. Also f is an
odd function, so I will further restrict my attention to the interval [0, π]. Now

f ′(x) = 2 cos 2x + 2 cosx = 2(2 cos2 x − 1) + 2 cosx

= 2(2 cos2 x + cos x − 1) = 2(2 cosx − 1)(cos x + 1)

= 4
(

cos x − 1

2

)

(cos x + 1).

Hence x is a critical point for f if and only if cos x ∈
{1

2
,−1

}

. The critical

points of f in [0, π] are thus π and
π

3
, and the critical points in [−π, π] are
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{

− π, π,
π

3
,−π

3

}

. Now f(π) = f(0) = 0 and

f
(π

3

)

= sin
(2π

3

)

+ 2 sin
(π

3

)

=

√
3

2
+

2
√

3

2
=

3
√

3

2
= 2.6(approximately),

and f
(

− π

3

)

= −f
(π

3

)

. Also note f ′(0) = 4. Since f is continuous on [−π, π],

we know that f has a maximum and a minimum on this interval, and since
f(x + 2π) = f(x) for all x ∈ R, the maximum (or minimum) of f on [−π, π]
will be a global maximum (or minimum) for f . Since f is differentiable every-
where, the extreme points are critical points and from our calculations f has

a maximum at
π

3
and a minimum at −π

3
. I will now determine the sign of f ′

on [0, π]:
0 < x < π

3
π
3

< x < π

cos x + 1 + +

cos x − 1
2

+ −

f ′(x) + −

Thus f is strictly increasing on
(

0,
π

3

)

and f is strictly decreasing on
(π

3
, π
)

.

We can now make a reasonable sketch for the graph of f .

−2

−1

2

1

−2π 2π−π π

13.7 Exercise. Sketch and discuss the graphs of the following functions.
Mention all critical points and determine whether each critical point is a local
or global maximum or minimum.

a) f(x) = (1 − x2)2.



13.2. OPTIMIZATION PROBLEMS. 277

b) g(x) =
x

1 + x2
.

c) h(x) = x + sin(x).

d) k(x) = x ln(x).

(The following remark may be helpful for determining lim
x→0

k(x). If 0 < t < 1,

then
1

t
<

1

t
3

2

. Hence if 0 < x < 1, then

| ln(x)| =

∣

∣

∣

∣

∫ x

1

1

t
dt

∣

∣

∣

∣

=
∫ 1

x

1

t
dt ≤

∫ 1

x

1

t
3

2

dt

= − 2

t
1

2

∣

∣

∣

∣

1

x

= 2

(

1√
x
− 1

)

≤ 2√
x
.

Thus,
|x ln(x)| ≤ 2

√
x for 0 < x < 1).

13.2 Optimization Problems.

13.8 Example. A stick of length l is to be broken into four pieces of
length s, s, t and t and the pieces are to be assembled to make a rectangle.
How should s and t be chosen if the area of the rectangle is to be as large as
possible? What is the area of this largest rectangle? Before doing the problem
you should guess the answer. Your guess will probably be correct.

Let s be the length of one side of the rectangle. Then 2s + 2t = l so

t =
l

2
− s; i.e., t is a function of s. Let A(s) be the area of a rectangle with

side s. Then

A(s) = st = s
( l

2
− s

)

=
l

2
s − s2 for 0 ≤ s ≤ l

2
.

I include the endpoints for convenience; i.e., I consider rectangles with zero
area to be admissible candidates for my answer. These clearly correspond to
minimum area. Now

A′(s) =
l

2
− 2s
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so A has only one critical point, namely
l

4
, and

A
( l

4

)

=
l

2

l

4
−
( l

4

)2
=

l2

16
=
( l

4

)2
.

Since A is continuous on
[

0,
l

2

]

we know that A has a maximum and a mini-

mum, and since A is differentiable on
(

0,
l

2

)

the extreme points are a subset of
{

0,
l

2
,
l

4

}

. Since A(0) = A
( l

2

)

= 0 the maximal area is
( l

4

)2
; i.e., the maximal

rectangle is a square. (As you probably guessed.)
This problem is solved by Euclid in completely geometrical terms [17, vol 1

page 382].
Euclid’s proof when transformed from geometry to algebra becomes the

following. Suppose in our problem s 6= t, say s < t. Since s + t =
l

2
, it follows

that s ≤ l

4
≤ t (if s and t were both less than

l

4
, we’d get a contradiction, and

if they were both greater than
l

4
, we’d get a contradiction). Let r be defined

by

s =
l

4
− r so r ≥ 0.

Then t =
l

2
− s =

l

2
−
( l

4
− r

)

=
l

4
+ r so

A(s) = st =
( l

4
− r

)( l

4
+ r

)

=
( l

4

)2 − r2 = A
( l

4

)

− r2.

Hence, if r > 0, A(s) < A
( l

4

)

and to get a maximum we must have r = 0

and s =
l

4
. This proof requires knowing the answer ahead of time (but you

probably were able to guess it). In any case, Euclid’s argument is special,
whereas our calculus proof applies in many situations.

Quadratic polynomials can be minimized (or maximized) without calculus
by completing the square. For example, we have

A(s) = −s2 +
l

2
s
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= −
(

s2 − l

2
s +

( l

4

)2
)

+
( l

4

)2

=
( l

4

)2 −
(

s − l

4

)2
.

From this we can easily see that A(s) ≤
( l

4

)2
for all s and equality holds only

if s =
l

4
. This technique applies only to quadratic polynomials.

13.9 Example. Suppose I have 100 ft. of fence, and I want to fence off 3
sides of a rectangular garden, the fourth side of which lies against a wall and
requires no fence (see the figure). What should the sides of the garden be if
the area is to be as large as possible?

This is a straightforward problem, and in the next exercise you will do it
by using calculus. Here I want to indicate how to do the problem without
calculation. Imagine that the wall is a mirror, and that my fence is reflected
in the wall.

y

x

x x

4x+2y=2002x+y=100

y y

x

x
x

When I maximize the area of a garden with a rectangle of sides x and y, then
I have maximized the area of a rectangle bounded by 200 feet of fence (on
four sides) with sides y and 2x. From the previous problem the answer to
this problem is a square with y = 2x = 50. Hence, the answer to my original
question is y = 50, x = 25. Often optimization problems have solutions that
can be guessed on the basis of symmetry. You should try to guess answers to
these problems before doing the calculations.

13.10 Exercise. Verify my solution in the previous example by using
calculus and by completing the square.
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13.11 Example. I want to design a cylindrical can of radius r and height
h with a volume of V0 cubic feet (V0 is a constant). How should I choose r and
h if the amount of tin in the can is to be minimum?

r

h

Here I don’t see any obvious guess to make for the answer.
I have

V0 = volume of can = πr2h,

so h =
V0

πr2
. Let A(r) be the surface area of the can of radius r. Then

A(r) = area of sides + 2 (area of top)

= 2πr · h + 2(πr2)

= 2πr
V0

πr2
+ 2πr2

=
2V0

r
+ 2πr2.

The domain of A is R+. It is clear that lim
r→0+

A(r) = +∞, and lim
r→+∞

A(r) = +∞.

Now A′(r) = −2V0

r2
+ 4πr =

4π

r2

(

r3 − V0

2π

)

. The only critical point for A is

r =
3

√

V0

2π
(call this number r0). Then A′(r) =

4π

r2
(r3 − r3

0). We see that

A′(r) < 0 for r ∈ (0, r0) and A′(r) > 0 for r ∈ (r0,∞) so A is decreasing
on (0, r0] and A is increasing on [r0,∞) and thus A has a minimum at r0. The
value of h corresponding to r0 is

h =
V0

πr2
0

=
V0

π
(

V0

2π

)2/3
=

22/3

π1/3
V

1/3
0 = 2

( V
1/3
0

21/3π1/3

)

= 2r0.

Thus the height of my can is equal to its diameter; i.e., the can will exactly
fit into a cubical box.
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In the following four exercises see if you can make a reasonable guess to
the solutions before you use calculus to find them.

13.12 Exercise. A box (without a lid) is to be made by cutting 4 squares
of side s from the corners of a 12′′ × 12′′ square, and folding up the corners as
indicated in the figure.

s
s

s
s

s
s

s
s

s

How should s be chosen to make the volume of the box as large as possible?

13.13 Exercise. A rectangular box with a square bottom and no lid is to
be built having a volume of 256 cubic inches. What should the dimensions be,
if the total surface area of the box is to be as small as possible?

13.14 Exercise. Find the point(s) on the parabola whose equation is

y = x2 that are nearest to the point
(

0,
9

2

)

.

13.15 Exercise. Let p = (0, 3) and let q = (12, 6). Find the point(s) r on
the x-axis so that path from p to r to q is as short as possible; i.e., such that
length([pr]) + length([rq]) is as short as possible.

q

r
2 8

=(0,3)

64

=(12,6)

p

12
  =(x,0)

10

You don’t need to prove that the critical point(s) you find are actually mini-
mum points.
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13.3 Rates of Change

6

12

3

a

d

cb p
βαx y

m

l

Suppose in the given figure, I want to find the shortest path from a to a
point p on the segment [b c] and back to d. Any such path will be uniquely
defined by giving any one of the six numbers:

x = dist(b,p), 0 ≤ x ≤ 12.
y = dist(p, c), 0 ≤ y ≤ 12

l = dist(a,p), 3 ≤ l ≤
√

32 + 122.

m = dist(d,p), 6 ≤ m ≤
√

62 + 122.

α = 6 apb, A ≤ α ≤ π
2
.

β = 6 dpc, B ≤ β ≤ π
2
.

Here A, B are as shown in the figure below:

3
B

6

12
A

3

12
=

sin(A)

cos(A)
= tan(A) and

6

12
=

sin(B)

cos(B)
= tan(B).

For a given point p, any of the six numbers is a function of any of the others.
For example, we have l is a function of x

l =
√

x2 + 9,
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and l is a function of m, since for x ∈ [0, 12] and y ∈ [0, 12] we have

m2 = (12 − x)2 + 36 =⇒ 12 − x =
√

m2 − 36

=⇒ 12 −
√

m2 − 36 = x

=⇒ l =

√

(

12 −
√

m2 − 36
)2

+ 9.

Also l is a function of α, since by similar triangles
sin(α)

1
=

3

l
and hence

l =
3

sin(α)
= 3 csc(α).

We have
dl

dx
=

1

2

2x√
x2 + 9

=
x√

x2 + 9

and
dl

dα
= −3 csc(α) cot(α).

I refer to
dl

dx
as the rate of change of l with respect to x and to

dl

dα
as the rate of

change of l with respect to α. Note that the “l”’s in “
dl

dx
”and “

dl

dα
”represent

different functions. In the first case l(x) =
√

x2 + 9 and in the second case

l(α) = 3 csc α. Here
dl

dx
is positive, indicating that l increases when x increases,

and
dl

dα
is negative, indicating that l decreases when α increases.

I want to find the path for which l + m is shortest; i.e., I want to find the
minimum value of l + m. I can think of l and m as being functions of x, and

then the minimum value will occur when
d

dx
(l + m) = 0; i.e.,

dl

dx
+

dm

dx
= 0. (13.16)

Now l2 = x2 + 9, so 2l · dl

dx
= 2 · x; i.e.,

dl

dx
=

x

l
= cos α,
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and m2 = (12 − x)2 + 62, so 2m
dm

dx
= 2(12 − x)(−1), i.e.,

dm

dx
= −(12 − x)

m
= − y

m
= − cos β.

Equation (13.16) thus says that for the minimum path cosα − cos β = 0;
i.e., cos α = cos β, and hence α = β. Thus the minimizing path satisfies the
reflection condition, angle of incidence equals angle of reflection. Hence the
minimizing triangle will make △bpa and △cpd similar, and will satisfy

6

y
=

3

x
and x + y = 12,

so
6x = 3y = 3(12 − x) = 36 − 3x

or
9x = 36 so x = 4 and y = 8.

This example was done pretty much as Leibniz would have done it. You should
compare the solution given here to your solution of exercise 13.15.

The problem in the last example was solved by Heron (date uncertain,
sometime between 250 BC and 150 AD) as follows[26, page 353]. Imagine the
line [bc] to be a mirror. Let a′ and d′ denote the images of a and d in the
mirror,

d′d′

cc

dd

bb p
α β

β
α

β

aa

a′a′

i.e. [aa′] and [dd′] are perpendicular to [bc] and dist(a,b) = dist(a′,b),
dist(d, c) = dist(d′, c). Consider any path apd going from a to a point p
on the mirror, and then to d. Then triangle(pcd) and triangle(pcd′) are
congruent, and hence

dist(p,d) = dist(p,d′).
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and hence the paths apd and apd′ have equal lengths. Now the shortest path
apd′ is a straight line, which makes the angles α and β are vertical angles,
which are equal. Hence the shortest path makes the angle of incidence equal
to the angle of reflection, as we found above by calculus.

Remark: We can think of velocity as being rate of change of position with
respect to time.

13.17 Exercise. Consider a conical tank in the shape of a right circular
cone with altitude 10′ and diameter 10′ as shown in the figure.

10

h

10

Water flows into the tank at a constant rate of 10 cubic ft./minute. Let h

denote the height of the water in the tank at a given time t. Find the rate of
change of h with respect to t. What is this rate when the height of the water

is 5′? What can you say about
dh

dt
when h is nearly zero?

13.18 Exercise. A particle p moves on the rim of a wheel of radius 1 that
rotates about the origin at constant angular speed ω, so that at time t it is at
the point

(

cos(ωt), sin(ωt)
)

. A light at the origin causes p to cast a shadow

at the point (2, y) on a wall two feet from the center of the wheel.

(2,y)

p
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Find the rate of change of y with respect to time. You should ignore the speed
of light, i.e. ignore the time it takes light to travel from the origin to the wall.


